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Abstract—This paper presents how system dynamics
and system control equations for an underwater robot were
derived using an Arnold-type operator to control the Open-
ROV. Typical behavior of the OpenROV on MATLAB nu-
merical simulations is illustrated.

1. Introduction

Although there are several designs, control system equa-
tions, and dynamic equations for underwater robots, such
as [1], unified methods to describe the dynamic equations
for the rigid body kinetics of an underwater robot have yet
to be established. Using the mathematical foundation of
rigid body dynamics provided by V. I. Arnold [2], we ap-
ply Arnold’s operator in order to facilitate the derivation
of dynamics for the rigid body kinetics of an underwater
robot. Secondly, OpenROV (Fig 1) (open-source remotely
operated vehicle) projects [3] have recently been promoted
to examine the sea bottom. Since simulations of the behav-
ior of OpenROV are of value, we describe the equations of
motion for real OpenROV. Finally, we illustrate the typi-
cal behavior of OpenROV on MATLAB numerical simula-
tions. In the following, let R be the set of real numbers and
Rn be the set of real number vectors.

Fig 1: OpenROV version 2.7

2. Motion in a Moving Coordinate System

In this section, we detail the mathematical foundation
for describing the motion of fundamental rigid body kinet-

ics [1] of an underwater robot based on [2], [4]. The time
parameter t for all the stated variables, such as r(t), orΩ(t),
etc., is omitted for convenience. We use the following no-
tation as [2] (Fig 2):
ei ∈ w (i = 1, 2, 3) are the base vectors of a right-handed
Cartesian stationary coordinate system at the origin O;
Ei ∈ W (i = 1, 2, 3) are the base vectors of a right moving
coordinate system connected to the body at the center of
the mass Oc.

Definition 1 Let w and W be oriented euclidean spaces
(i.e. orthogonal spaces). A motion of W relative to w is
a smooth mapping on t:

B : W → w, (1)

which preserves the metric and the orientation (Fig 2).

Fig 2: Radius vector of a point with respect to stationary
(q) and moving (Q) coordinate systems

Definition 2 A motion B is called a rotation if it takes the
origin of W to the origin of w (i.e. if B is a linear operator).

Definition 3 w is called a stationary coordinate system, W
a moving one, and q ∈ w the radius-vector of a point mov-
ing relative to the stationary system; if

q= r + ut + BQ (2)

There exists a flow of fluid velocity vector u in w. Q is
called the radius vector of the point relative to the moving
system (Fig 2). We express the “absolute velocity” q̇ in
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terms of the relative motion Q and the motion of the coor-
dinate system B. By differentiating with respect to t in Eq.
(2), we arrive at Eq. (3) for the addition of velocities.

q̇= ṙ + u̇t + u +
d
dt

(BQ). (3)

In order to carry the stationary frame ei (i = 1, 2, 3) into
the moving frame Ei (i = 1, 2, 3), we perform three rota-
tions (Fig 3):

1. Given an angle ψ around the e3 axis, under this rota-
tion, e3 remains fixed and e2 goes to E−2

2 by means of
Eq. (5).

2. Given an angle θ around the E−2
2 axis, under this rota-

tion, E−2
2 remains fixed and E−2

1 goes to E−1
1 by means

of Eq. (6).

3. Given an angle ϕ around the E−1
1 axis, under this rota-

tion, E−1
1 remains fixed and E−1

3 goes to E3 by means
of Eq. (7).

After all three rotations are completed, e1 has moved to E1,
and e2 to E2; therefore, e3 moves to E3. The angles ψ, θ,
and ϕ are called the Tait-Bryan angles (one of the Euler
angle systems).

Fig 3: Rotations defining the Tait-Bryan angles

Here we describe an operator B, as follows:

B = RψRθRϕ

=

 cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ cθsϕ cθcϕ

, (4)

Rψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

, (5)

Rθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

, (6)

Rϕ =

 1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

. (7)

cψ, sψ, cθ, sθ, cϕ and sϕ denote cosψ, sinψ, cos θ, sin θ,
cos ϕ and sin ϕ, respectively. Hence, the base vectors of
the moving coordinate system generated by means of the
operator B are expressed as:

BE1 = cosψ cos θe1 + sinψ cos θe2 − sin θe3, (8)

BE2 = (cosψ sin θ sin ϕ − sinψ cos ϕ)e1

+ (sinψ sin θ sin ϕ + cosψ cos ϕ)e2

+ cos θ sin ϕe3, (9)

BE3 = (cosψ sin θ cos ϕ + sinψ sin ϕ)e1

+ (sinψ sin θ cos ϕ − cosψ sin ϕ)e2

+ cos θ cos ϕe3. (10)

Since W is a moving coordinate system connected to the
body of an underwater robot, Q is at rest in W (i.e., Q̇ =
0) and the coordinate system W rotates (i.e., r = 0). In
this case, the motion of the point q is a transferred rotation
given by Eq. (11).

q̇ = ṙ + u̇t + u + ḂQ = ṙ + u̇t + u + [BΩ, BQ], (11)

where [ · , · ]： the vector product.
The vectorΩ ∈ W is called the vector of angular velocity

in the underwater robot. In this case, Ω is expressed by:

Ω = BTω. (12)

The vector ω ∈ w is called the instantaneous angular
velocity given by Eq. (13).

ω = ψ̇e3 + θ̇E−2
2 + ϕ̇E−1

1 . (13)

In numerous studies and texts, the angular velocity vector
(ψ̇, θ̇, ϕ̇) of the Tait-Bryan angles [5], [6] is often referred to
as coordinate components Ei, (i = 1, 2, 3) on the base vec-
tors of the moving coordinate system. It must be stressed,
however, that the description given in Eq. (13) is correct.
Using the angular velocity vector of the Tait-Bryan angles
of Eq. (13), we can rewrite Eq. (11), as follows:

q̇ = ṙ + u̇t + u + ψ̇
∂

∂ψ
(BQ) + θ̇

∂

∂θ
(BQ) + ϕ̇

∂

∂ϕ
(BQ). (14)

Here, let h ∈ w be the angular momentum of the un-
derwater robot in the stationary inertia coordinate system,
H ∈ W be the angular momentum of the underwater robot
in the moving coordinate system, and Î be the moment of
inertia of the underwater robot. Using operator B, we ob-
tained the following equations:

h = Îω = BH ∈ w, (15)
H = ÎΩ ∈W. (16)

In addition, let τ ∈ w be the torque of the underwater
robot. We obtain the time derivative of an angular momen-
tum which is equal to the moment, as follows:

d
dt

h = τ =
d
dt

BH = BT, ÎΩ̇ + [Ω,H] − T = 0. (17)

Then, Ω and Ω̇ can be expressed in concrete terms by:

Ω = (−ψ̇ sin θ + ϕ̇)E1 + (ψ̇ cos θ sin ϕ + θ̇ cos ϕ)E2

+ (ψ̇ cos θ cos ϕ − θ̇ sin ϕ)E3, (18)

and

Ω̇ = (−ψ̈sθ − ψ̇θ̇cθ + ϕ̈)E1

+ (ψ̈cθsϕ−ψ̇θ̇sθsϕ+ψ̇ϕ̇cθcϕ+θ̈cϕ−θ̇ϕ̇sϕ)E2

+ (ψ̈cθcϕ−ψ̇θ̇sθcϕ−ψ̇ϕ̇cθsϕ−θ̈sϕ−θ̇ϕ̇cϕ)E3, (19)

respectively.
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A torque τ of Eq. (17) is also given as:

τ = [r, f ]. (20)

Here, r and f denote the position vector on which external
forces act and a vector of external forces, respectively.

The coordinate components of an angular momentum of
the underwater robot are given as Eq. (21).

HA =

3∑
i=1

HiAEi. (21)

Then, we have the following equation:

(H1,H2,H3)T = Î(Ω1,Ω2,Ω3)T. (22)

The moment of inertia Î is also defined by

Î =
 I11 I12 I13

I21 I22 I23
I31 I32 I33

. (23)

In this paper, for Î, we assume that Ikl = 0, and for k , l.

3. Dynamic Model of OpenROV

Fig 4: Coordinate systems and forces/moments acting on
OpenROV (m = 2.4 [kg], g = 9.80665 [m/s2], I11 =

0.01355 [kg · m2], I22 = 0.00480 [kg · m2], I33 =

0.00593 [kg · m2], ℓ = 0.165 [m])

The coordinate systems and free body diagram for Open-
ROV are shown in Figure 4. Based on the preceding math-
ematical foundation, we can describe the dynamic model
of OpenROV (Fig 4). Fi, (i = 1, 2, 3) and Ti, (i = 1, 2, 3)
of Figure 4, represent vertical forces and moment, respec-
tively. Fi, (i = 1, 2, 3) and Ti, (i = 1, 2, 3) are defined in a
similar manner [7]. Each motor of OpenROV has an an-
gular speed ωi and produces a vertical force Fi according
to:

Fi = kFiω
2
Mi, i = 1, 2, 3, (24)

Experimentation with a fixed motor in a steady state shows
that kF ≈ 7.3 × 10−6 N

rpm2 . The motors also produce a mo-
ment according to:

Ti = kTiω
2
Mi, i = 1, 2, 3, (25)

The constant, kT , is determined to be approximately 1.5 ≈
10−8 Nm

rpm2 by matching the performance of the simulation to
the real system. For the rigid body kinetics of Eq.(3) and
Eq.(17), taking into consideration gravitational or buoy-
ancy terms, system inertia matrix (including added mass),
system moment matrix (including added moment), viscous
damping, current loads, and an assumption of ü = 0, we
arrive at the equations of motion for OpenROV, as follows:

(Ṁ + Madd)(r̈ + 2u̇)
= (ρVvol − m)ge3 − kD|ṙ − u|(ṙ − u)

+ kL|ṙ − u|2(
3∑

i=1

BEi − (ṙ − u, BEi)
ṙ − u
|ṙ − u| )

− Γt(ṙ − u) + B(−(−F1E1 − F2E1) + F3E3), (26)

(Î + Îadd)Ω̇ + [Ω, (Î + Îadd)Ω] = −ΓrΩ̇ + (T1 − T2)E1

+[ℓE2, F2E1] + [−ℓE2, F1E1]. (27)

m: the gross weight of OpenROV, M = m × Unitmatrix,
ρ: fluid density, Vvol:the volume of the fluid displaced by
OpenROV, g: the gravitational acceleration, ρVvolg: buoy-
ancy, kD: drift force coefficient function, kL: lift force co-
efficient function, Γt, Γr: viscous damping coefficient func-
tions, Madd: added mass matrix, Îadd: added moment of
inertia, kD = kD(u, r̈, ψ, θ, ϕ), and kL = kL(u, r̈, ψ, θ, ϕ). No-
tice that Madd, Îadd, Γt and Γr are diagonal matrices.

Since the operator B states variables Ω and Ω̇ are ex-
pressed as the functions of (ψ̇, θ̇, ϕ̇, ψ, θ, ϕ), the state equa-
tion of OpenROV can be rewritten as equations of the func-
tion of (ψ̇, θ̇, ϕ̇, ψ, θ, ϕ). Note that OpenROV can shift the
direction of rotation of its motors using si, (i = 1, 2, 3).
When OpenROV moves forward, however, Motor 1 and
Motor 2 rotate at differential directions to maintain the bal-
ance of OpenROV. Furthermore, the propeller pitch of Mo-
tor 1 is different from the propeller pitch of Motor 2.

ẋ = F(x) +G(x,u), (28)

xT = (ψ̇, θ̇, ϕ̇, ψ, θ, ϕ), (29)

δxT = (δψ̇, δθ̇, δϕ̇, δψ, δθ, δϕ, ), (30)

uT = ((−1)s1ω2
M1, (−1)s2ω2

M2, (−1)s3ω2
M3), (31)

F(x) =



fψ(ψ̇, θ̇, ϕ̇, θ, ϕ)
fθ(ψ̇, θ̇, ϕ̇, θ, ϕ)
fϕ(ψ̇, θ̇, ϕ̇, θ, ϕ)

ψ̇
θ̇
ϕ̇


, (32)

BG =



[ 1
(sin2 θ−1)(I33+Ia33)

]BT
Gψ

[ 1
I33Ia33

]BT
Gθ

[ 1
(sin2 θ−1)(I11+I11a)(I33+I33a)

]BT
Gϕ

[0T]
[0T]
[0T]


. (33)
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The variational equation (34) that can be used to control the
OpenROV is described by

d
dt
δx = DF(x0) · δx + BGu, (34)

where DF(x0) and x0 denote the Jacobian of F(x) and the
driving point of x. In particular, fψ, fθ, and fϕ in F(x)
are easily obtained using Maple symbolic computations on
BT

Gψ, BT
Gθ, and BT

Gϕ, as follows:

BT
Gψ = [ℓ cos ϕ cos θkF1,−ℓ cos ϕ cos θkF2,− cos ϕ cos θkM3], (35)

BT
Gθ = [ℓ sin ϕkF1,−ℓ sin ϕkF2, sin ϕkM3], (36)

BT
Gϕ = [(I33 + Ia33) sin2 θkM1

+(I11 + Ia11)ℓ cos ϕ cos θ sin θkF1 − (I33 + Ia33)kM1,

(I33 + Ia33) sin2 θkM2 − (I11 + Ia11)ℓ cos ϕ cos θ sin θkF2

−(I33 + Ia33)kM2,−(I11 + Ia11) cos ϕ cos θ sin θkM3]. (37)

4. Simulation of Motion of OpenROV

By means of numerical computations on MATLAB with
ode45 solver applied to Eq. (26) and Eq. (28), the sim-
ulation results illustrated in Figure 5 and Figure 6 are ob-
tained. The initial values are set as ρVvolg = 23.53596 [N],
kD = 0.015, kL = 0.5, Γt = Γr = 2, Madd = 4, Îadd = 0,
ψ̇ = θ̇ = ϕ̇ = 0 [rad/s], ψ = θ = ϕ = 0 [rad], r1 =

r2 = 0 [m], r3 = −1 [m], ṙ1 = ṙ2 = ṙ3 = 0 [m/s], u1 =

0.1 [m/s], u2 = −0.2 [m/s], u3 = −0.1 [m/s], ωM1 =

1000 [rpm], ωM2 = 900 [rpm], ωM3 = 0 [rpm], and
s1 = s2 = s3 = 0.

5. Concluding remarks

The following results are obtained:

(1) We have derived the system dynamics and system con-
trol equations for an underwater robot by using the operator
B together with two coordinate systems, W and w, where
simple ocean currents exist. In addition, we have described
the equations of motion for a real OpenROV version 2.7.

(2) We have reliably illustrated the typical behavior of the
OpenROV by numerical simulations on MATLAB with an
ode45 solver; however, appropriate numerical methods for
reliable simulations should be investigated further.
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