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Abstract—In our previous study, we analyzed synchro-
nization phenomena and confirmed the waves which intri-
cately behave on van der Pol oscillators coupled by induc-
tors as a ring. In this study, we investigate the details of this
complex waves by using phase states, phase differences be-
tween adjacent oscillators and instantaneous electric pow-
ers in changing the number of van der Pol oscillators.

1. Introduction

In this world, there is a synchronization phenomenon
which is one of important phenomena. Synchronization
phenomena are shown as flashing groups of fireflies in
south-east Asian, as motion among pacemaker cells, as a
relationship of the rotation and the revolution of the moon,
as a generating phenomena of laser on semiconductor, and
so on[1]-[4]. Especially, the synchronization phenomena
can be easily observed as one of quickly and clearly phe-
nomena in electric circuits.

In our previous study, we investigated and analyzed syn-
chronization phenomena on van der Pol oscillators coupled
by inductors as a ring. We discovered and observed con-
tinuously propagating wave motions with switching phase
states between adjacent oscillators. The wave motions are
named phase-inversion waves[5]. We also observed spe-
cial waves which propagate a phase difference between ad-
jacent oscillators and change to the phase-inversion waves
or disappear. The waves are called phase-waves[6]. Fur-
thermore, complex waves, which are not phase-inversion
waves and phase-waves and continuously propagate, were
discovered. The complex waves can be classified to two
types. One of the complex waves is waves like mixed
phase-inversion waves and phase-waves, and the other one
is winding waves.

In this paper, we investigate these complex waves. Re-
lationships between the complex waves and itinerancies of
phase states are analyzed, and the details of complex waves
are investigated by using phase differences between adja-
cent oscillators, instantaneous electric powers, and so on,
in changing the number of oscillators.

2. Circuit model

Our circuit model is shown in Fig. 1. N van der Pol
oscillators are coupled by inductors Lc as a ring. Each van

der Pol oscillator is constructed by using a inductor L, a ca-
pacitor C and a nonlinear negative resistor f (v). The f (vk)
of k-th oscillator(Oscillator k) is assumed as Eq. (1). The
Oscillator k is written as OSCk in this paper.

f (vk) = −g1vk + g3v3
k (1 ≤ k ≤ N) (1)

Circuit equations of this circuit are normalized by using
Eq. (2). The normalized equations are shown in Eq. (3).
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{If k = 1, a = N and b = 2. If k = N, a = N − 1 and
b = 1. If 2 ≤ k ≤ N − 1, a = k − 1 and b = k + 1.}
The instantaneous electric powers are calculated by using
Eqs. (4)–(5). The Pk shows an instantaneous electric power
of OSCk. The PLc(k−1,k) shows an instantaneous electric
power of coupling inductor Lc between OSCk−1 and OSCk.

Pk =
αδ

ε
yk (xa − 2xk + xb) (4)

PLc(a,k) =
αδ

ε
(xk − xa) (yk − ya) (5)

{If k = 1, a = N and b = 2. If k = N, a = N − 1 and
b = 1. If 2 ≤ k ≤ N − 1, a = k − 1 and b = k + 1.}
Normalized circuit equations of this circuit model are sim-
ulated by using fourth order Runge-Kutta method.

3. Phase Itinerancy of Complex Waves
Complex waves are investigated on the ring. We set 5

observation conditions as follows.
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Figure 1: Circuit model

1. N is changed from 9 to 16.

2. δ is fixed as 1.

3. α is fixed as 0.50.

4. ε is fixed as 0.35.

5. The phase-inversion waves are generated in the in-
phase synchronizations and initial values which a set
of two phase-inversion waves propagates are set.

Some differences between phase differences itinerancies
of two types of complex waves are investigated.
3.1. Changing the number of oscillator

The itinerancies of phase differences are shown in Figs.
2–7. The Figs. 2–4 are constructed by stacking long and
thin boxes. In each box, sum of voltages of adjacent oscilla-
tors is shown along time. A phase state between OSC1 and
OSC2 is shown in the top box, and a phase state between
OSCN and OSC1 is shown in the bottom box. Therefore,
black regions express the almost in-phase synchronization
and white regions express the almost anti-phase synchro-
nization. In the Fig. 2, we can confirm many waves prop-
agate and disappear. The winding complex waves can be
observed in the Figs. 3 and 4. When the number of os-
cillator is increased, the width of black regions and white
regions are increased too(see Figs. 3–4). The Figs. 5–7
show itinerancies of phase differences of adjacent oscilla-
tors. When the Figs. 2–4 are observed, we can understand
that itinerancies are very complex.
3.2. Two types of complex waves

The complex waves can be classified to two types.

Type A The waves look like mixed phase-inversion waves and
phase-waves.

Type B The waves is winding and propagating.

Figure 2: Complex waves(N = 9, α = 0.50, and ε = 0.35)

Figure 3: Winding complex waves(N = 10, α = 0.50, and
ε = 0.35)

The types of the complex waves are shown in Table 1
when the number of oscillators is changed from 9 to 16.
We investigate relationships between itinerancies of phase
differences and the complex wave of the each type. Itin-
eracies of phase differences of the Type A and Type B are
shown in Figs. 8 and 9, respectively. We can observe phase
differences which are continuously expanding along time
in the Fig. 8 when the Type A complex waves are prop-
agating. However, in the Fig. 9, we can confirm phase
differences which do not continuously expands when the
complex waves of Type B are propagating. Characteris-
tics of Type A complex waves differ from characteristics of
Type B complex waves.
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Figure 4: Winding complex waves(N = 16, α = 0.50, and
ε = 0.35)
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Figure 5: Itinerancies of phase differences of complex
waves(N = 9, α = 0.50, and ε = 0.35)

3.3. Detail investigation by using instantaneous electric
powers

The relationship between complex waves and instanta-
neous electric powers are investigated. The instantaneous
electric powers are shown in Figs. 10–12. The Fig. 10
shows instantaneous electric powers of OSC2 and OSC3 of
the Type A complex wave on the nine oscillators array, and
the Figs. 11 and 12 show instantaneous electric powers of
OSC2 and OSC3 of the Type B complex wave on the 10 os-
cillators array and the 16 oscillators array. The itinerancy
of the instantaneous electric power of the Type A complex
wave differ from the itinerancy of the instantaneous elec-
tric power of the Type B. The itinerancy of instantaneous
electric power of the Type A is an irregular pattern and very
complex(see the Fig. 10). However, the itinerancy of the
Type B is not the irregular pattern(see the Figs. 11 and
12). Characteristics of Type A complex waves differ from
characteristics of Type B complex waves.

In the Figs. 11 and 12, a period of the large amplitude

Table 1: Type of complex waves
9 10 11 12 13 14 15 16
A B B B B B B B
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Figure 6: Itinerancies of phase difference of winding com-
plex waves(N = 10, α = 0.50, and ε = 0.35)
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Figure 7: Itinerancies of phase difference of winding com-
plex waves(N = 16, α = 0.50, and ε = 0.35)

shows the white regions of the Figs. 3 and 4, and a pe-
riod of the small amplitude shows the black regions of the
Figs. 3 and 4. When phase-inversion waves are propagat-
ing, the widths of white regions are fixed. However, when
complex waves are propagating, the width of white regions
are fluctuated. We can understand that the rate of black and
white regions are almost not different when the number of
oscillator is changed(see the Figs. 11 and 12).

4. Conclusions

We made clear that complex waves are effected by the
number of oscillators and the complex waves can be clas-
sified to two types. When the Type A complex waves were
propagating, the phase differences of each oscillators ex-
panded along time. However, we made clear that the phase
differences of each oscillators do not expand when the Type
B complex waves propagate, Moreover, an itinerancy in-
stantaneous electric power of Type A differed from an itin-
erancy instantaneous electric power of Type B. The itiner-
ancies of instantaneous electric powers of Type B was al-
most regular, but itinerancies of instantaneous electric pow-
ers of Type A was not regular. We clarified that character-
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Figure 8: Itinerancy of phase difference between adjacent
oscillators in Type A(N = 9, α = 0.50, and ε = 0.35)

Figure 9: Itinerancy of phase difference between adjacent
oscillators in Type B(N = 16, α = 0.50, and ε = 0.35)

istics of Type A complex waves differ from characteristics
of Type B complex waves. Furthermore, we observed that
the rate of black and white regions are almost not differ-
ent when the number of oscillators is changed and Type B
complex waves can be observed.
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