
Efficient Implementation of Boltzmann Machine
using Asynchronous Network of Cellular Automaton-based Neurons

Takashi Matsubara† and Kuniaki Uehara†

†Graduate School of System informatics, Kobe University
1-1 Rokko-dai, Nada, Kobe, Hyogo 657–8501, Japan.

Email: matsubara@phoenix.kobe-u.ac.jp, uehara@kobe-u.ac.jp

Abstract—Artificial neural networks with stochastic
state transitions, such as Boltzmann machines, have ex-
celled other machine learning approaches in various bench-
mark tasks. They however require implementation of non-
linear continuous functions and generation of numerous
pseudo random numbers, resulting in increase in com-
putational resources. This study proposes a novel im-
plementation method of Boltzmann machine using asyn-
chronous network of cellular automaton-based neurons.
The proposed approach requires much less computational
resources than traditional implementation approaches since
it does not require both the nonlinear continuous functions.

1. Introduction

Artificial neural networks having deep architecture re-
cently have achieved state-of-the-art results in various
benchmark tasks (see [1, 2, 3] for review). Some of these
successes depend on Boltzmann machines [4, 5]. They are
artificial neural networks consisting of bidirectionally con-
nected units with stochastic transitions; they can approxi-
mate a given probability distribution by appropriate learn-
ing algorithm [6]. As the previous studies mentioned, it
requires repeated Gibbs sampling to learn and obtain a dis-
tribution [5]. In practice, the Boltzmann machines also re-
quire generation of numerous pseudo random numbers for
Gibbs sampling and computation of nonlinear probability
functions. The architecture of the cutting-edge artificial
neural network becomes larger and larger [7] and becomes
requiring a dedicated hardware [8, 9].

On the other hand, more biologically plausible neural
network model, spiking neural network, also attracts at-
tention as an alternative artificial neural network [10, 11].
Some studies modified spiking neural network models to
act as Bolzmann machines [12, 13, 14]. They employed
stochastic state transitions or strong noise induction to im-
plement the stochastic units, and lack a perspective of com-
putational efficiency. These studies however imply that a
spiking neuron has a potential to act as a stochastic unit.

Recently, an alternative modeling and implementation
approach for spiking neural network has been investigated;
the nonlinear dynamics of a neuron is modeled as an
asynchronous cellular automaton and is implemented as
an asynchronous sequential logic circuit [15, 16, 17, 11].

These models have achieved better results in task of re-
producing dynamics of mammalian nervous system and
required less computational resources than traditional ar-
tificial neural networks. Following these previous studies,
this paper proposes a type of the hardware-oriented spik-
ing neural networks. Empirical evaluation demonstrates
that the proposed model acts as Bolzmann machine and ap-
proximates a give probability distribution well despite that
it requires less computational resources.

2. Asynchronous Network of Cellular Automaton-
based Neuron

This study introduces a type of cellular automaton-
based neuron models (ab. CANs) [15, 16, 17, 11]. The
dynamic of the CAN in this paper is similar to those of
the previously proposed versions but not the same. A CAN
is denoted by an index k. The CAN k has a state Vk, which
is restricted to the range of [0, 1). The state Vk can be re-
garded as a membrane potential from a neuron model view-
point. The CAN k accepts a periodic internal clock Ck(t)
expressed as

Ck(t) =

1 if (t − θk) (mod 1/ f C
k) = 0,

0 otherwise,

where f C
k is the internal clock frequency, θk is its initial

phase, and t ∈ [0,∞) is the continuous time. The CAN also
accepts multiple external binary inputs S l(t) ∈ {0, 1} They
can be regarded as pre-synaptic action potentials from a
neuron model viewpoint. The accepted inputs generate the
following signal Uk;

Uk(t) =
∑

l

Gk,lS l(t). (1)

where Gk,l can be regarded as a synaptic weight from the
pre-synaptic action potential S l(t) to the CAN k, and Gk,l >
0 (Gk,l < 0) implies excitation (inhibition). At the rising
edge of the internal clock Ck(t), the membrane potential Vk

is updated as

Vk(t+)=

Vk(t) − ck + Uk(t) + ξ(t) if Ck(t)=1,
Vk(t) otherwise,

- 634 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016

where the variable t+ denotes the moment just after t, i.e.,
t+ = limε→+0 t + ε, the parameter ck represents a leak cur-
rent, ξ(t) has a noise term. When the membrane poten-
tial Vk reaches or exceeds 1.0, the membrane potential Vk

is immediately reset and the CAN k generates an output
Yk(t) = 1 as

Vk(t+)=

Vk(t) (mod 1) if Vk(t) ≥ 1,
Vk(t) otherwise,

and

Yk(t+) =


1 if Vk(t) ≥ 1,
0 if C(t) = 1,
Yk(t) otherwise.

An asynchronous recurrent networks of CANs (ab. AN-
CAN) [11] consists of n CANs. A CAN l is connected to
another CAN k via a synaptic weight Gk,l. An action po-
tential Yl(t) = 1 generated by the CAN l is delivered to the
CAN nh

l and is accepted as a pre-synaptic action potential
S l(t) = 1, i.e.,

S l(t) = Yl(t). (2)

2.1. Conversion from Boltzmann Machine

The detailed description of dynamics of the Bolzmann
machine is outside of scope of this paper and therefore is
omitted. This paper focuses on a Bernoulli restricted Bolz-
mann machine, consisting of nv visible units and nh hidden
units; they have bias terms bv and bh and are connected via
synaptic weights Wk,l. Each unit has a binary state; 0 or 1.
The target ANCAN was constructed with nv CANs corre-
sponding to the visible units and nh CANs corresponding
to the hidden units. The leak current ck corresponding to a
unit k is set to −bk. The synaptic weights Gk,l are set to the
corresponding synaptic weights Wk,l. The internal clock
frequency f C

k is randomly chosen from a uniform distri-
bution U(1, 2). For comparison, the synchronous version
of the ANCAN, called SNCAN, is also prepared; internal
clock frequency is uniformly 1 and the initial phase θk of a
visible unit is 0 and that of a hidden unit is 0.5. For mim-
icking sigmoid function σ(u) = (1 + exp(−u))−1, the noise
term ξ is set to follow a normal distribution N(2

3 , 3).

3. Results

3.1. Activation Function

When a CAN accepts the fixed inputs Uk(t) = x and the
probability of action potential is denoted as y = P(Y = 1),
the empirical relationship between x and y is depicted in
Fig. 1 (a). For comparison, the sigmoid function y = (1 −
exp(−x))−1 and its piecewise linear approximation called

−6 60
0

1
sigmoid

PLAN

CAN

(a)

−6 60
0.000

0.001
PLAN

CAN

(b)

Figure 1: (a) The CAN and the other activation functions.
(b) The squared difference from the sigmoid function.

PLAN [18] are also depicted; PLAN is expressed as

y =



1 if x ≥ 5
0.03125|x| + 0.84375 if 5 > |x| ≥ 2.375
0.125|x| + 0.625 if 2.375 > |x| ≥ 1
0.25|x| + 0.5 if 1 > |x|
0 if 5 ≥ x

The PLAN is one of the most efficient approximation meth-
ods for implementation on a sequential logic circuit. While
the equation contains multiplications, they can be imple-
mented by shift register and logical operators. Fig. 1 (b)
shows the squared differences of the proposed CAN and the
PLAN from the sigmoid function, implying that the pro-
posed CAN and the PLAN are almost comparable. The
proposed CAN is a good approximation of the sigmoid
function.

3.2. Approximation of Boltzmann Machine

The Bernoulli restricted Bolzmann machine was pre-
pared, where the number of neurons was set to nv = nh = n,
and the synaptic weights Wk,l and the bias term bk were
initialized to the samples from the normal distribution
N(0, (n + 1)−1). The Boltzmann machine was implemented

- 635 -

in several ways. The Boltzmann machine was implemented
on with a general purpose computer with 64-bit floating
point numbers, the sigmoid function, and the Mersenne
twister psuedo-random number generator and was used
for the original Boltzmann machine. The other Bolzmann
machines were implemented with fixed-point numbers of
scaling factor 28. The activation functions were the sig-
moid function, the PLAN, and the proposed CAN. For the
sigmoid function and the PLAN, the M-sequence random
number generator (ab. M-seq. RNG) of 16-bit was used to
generate uniform distribution U(0, 1). For the proposed
CAN, the M-seq. RNG of 16-bit was also used to generate
the noise term ξ̂ following binomial distribution B(12, 0.5),
where ξ̂+ 2

3 −6 is a good approximation of the noise term ξ

following a normal distribution N(2
3 , 3). The M-seq. RNG

was updated according to the internal clock with the fre-
quency of 1.

After the Bolzmann machines were initialized and the
neurons were updated repeatedly, the Bolzmann machines
reached a stationary distribution. In this paper, the out-
puts of the first five visible neurons and their distribution
were focused. The Kullback-Leibler divergence DKL was
used to measure the similarity between the stationary dis-
tributions of the original Bolzmann machine and the imple-
mented Bolzmann machine. The smaller Kullback-Leibler
divergence DKL implies the better accuracy of the approxi-
mation. The number of neurons was set to n = 5, 20, 100.
When n ≤ 20, the stationary distribution of the original
Bolzmann machine was theoretically obtained. Otherwise
the empirical distribution of 107 samples from the origi-
nal Bolzmann machine was used. The average Kullback-
Leibler divergences DKL obtained from 10 trials is shown
in Fig. 2 and is summarized in Table 1. When n = 5,
the sigmoid function demonstrated the best performance.
The PLAN and the ANCAN were comparable, while the
SNCAN had a worse performance. When n = 20 and
n = 100, the ACAN got performance comparable to the
sigmoid function and excelled the PLAN. Remarkably, the
Kullback-Leibler divergence DKL of the ANCAN kept de-
creasing after sampling 106 times, while that of the PLAN
converged before sampling 105 times.

3.3. Implementation

The Bolzmann machines were also implemented on an
field programmable gate array (FPGA) device with the
fixed-point numbers with scaling factor 28. Xilinx FPGA
Kintex-7 XC7K325T-2FFG900C mounted on the Kintex-7
FPGA KC705 Evaluation Kit [19] was used. A bitstream
file for the FPGA configuration was generated by the Xil-
inx design software environment ISE 14.7. The corre-
sponding implementation cost, i.e., the number of the occu-
pied slices on the FPGA devices, are also shown in Table 1.
Straight-forward implementation of the sigmoid function is
trouble some and thus is omitted. When n = 5, the ANCAN
and the SNCAN require computational resources less than

100 106

#samples
10−5

10−4

10−3

10−2

10−1

100

101

D
K
L simulation

sigmoid

PLAN

CAN(sync.)

CAN(async.)

100 106

#samples
10−5

10−4

10−3

10−2

10−1

100

101

D
K
L simulation

sigmoid

PLAN

CAN(sync.)

CAN(async.)

100 106

#samples
10−5

10−4

10−3

10−2

10−1

100

101

D
K
L simulation

sigmoid

PLAN

CAN(sync.)

CAN(async.)

Figure 2: Kullback-Leibler divergence DKL. Simulation
implies implementation on a general purpose computer
with 64-bit floating point numbers, the sigmoid function,
and the Mersenne twister psuedo-random number genera-
tor. The other results are obtained from implementation
with fixed-point numbers of scaling factor 28, the corre-
sponding activation function, and the M-sequence random
number generator (ab. M-seq. RNG) of 16-bit.

half that of the PLAN. When n = 20, they reduced the im-
plementation cost by 30 %.

4. Discussion

These results suggest that the ANCAN is a better ap-
proximation and requires much less computational re-
sources when compared to the Bolzmann machines with
the sigmoid function or the PLAN function. This study

- 636 -

Table 1: Comparison between the Boltzmann Machines.
function bit length RNG DKL Implementation

n = 5 n = 20 n = 100 n = 5 n = 20

sigmoid 64-bit float. Mersenne twister < 1.68 × 10−5 2.00 × 10−5 < 2.00 × 10−5 – –
sigmoid 8-bit fixed M-seq. RNG of 16bit 1.28 × 10−4 2.15 × 10−4 3.92 × 10−4 – –
PLAN 8-bit fixed M-seq. RNG of 16bit 3.06 × 10−4 5.43 × 10−4 4.54 × 10−4 1033 8470
CAN (sync.) 8-bit fixed M-seq. RNG of 16bit 1.67 × 10−3 1.10 × 10−3 6.63 × 10−4 438 5683
CAN (async.) 8-bit fixed M-seq. RNG of 16bit 3.41 × 10−4 2.62 × 10−4 3.49 × 10−4 435 5974

was partially supported by the KAKENHI (16K12487 and
26280040), Kayamori Foundation of Information Science
Advancement, and The Nakajima Foundation.

References

[1] Y. Bengio, “Learning Deep Architectures for AI,”
Foundations and Trends in Machine Learning, vol. 2,
no. 1, pp. 1–127, 2009.

[2] J. Schmidhuber, “Deep Learning in Neural Networks:
An Overview,” arXiv preprint arXiv:1404.7828,
vol. 61, pp. 1–66, 2014.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep
learning,” Nature, vol. 521, no. 7553, pp. 436–444,
2015.

[4] R. Salakhutdinov and G. E. Hinton, “Deep Boltzmann
Machines,” International Conference on Artificial
Intelligence and Statics, no. 3, pp. 448–455, 2009.

[5] R. Salakhutdinov and G. Hinton, “An Efficient Learn-
ing Procedure for Deep Boltzmann Machines,” Neu-
ral Computation, vol. 24, no. 8, pp. 1967–2006, 2012.

[6] D. Ackley, G. E. Hinton, and T. Sejnowski,
“A learning algorithm for boltzmann machines,”
Cognitive science, vol. 9, no. 1, pp. 147–169, 1985.

[7] K. He et al., “Deep Residual Learning for Image
Recognition,” Arxiv.Org, vol. 7, no. 3, pp. 171–180,
2015.

[8] K. Ovtcharov et al., “Accelerating Deep Convo-
lutional Neural Networks Using Specialized Hard-
ware,” Microsoft Research, pp. 3–6, 2015.

[9] T. Marukame et al., “Error tolerance analysis of
deep learning hardware using restricted Boltzmann
machine towards low-power memory implementa-
tion,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 7747, no. c, pp. 1–1, 2016.

[10] Y. Cao, Y. Chen, and D. Khosla, “Spiking
Deep Convolutional Neural Networks for Energy-
Efficient Object Recognition,” International Journal
of Computer Vision, no. Darpa 2011, pp. 54–66,
2014.

[11] T. Matsubara and H. Torikai, “An Asynchronous
Recurrent Network of Cellular Automaton-Based
Neurons and Its Reproduction of Spiking Neural
Network Activities,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 27, no. 4, p.
(under review), 2014.

[12] L. Buesing et al., “Neural dynamics as sampling: A
model for stochastic computation in recurrent net-
works of spiking neurons,” PLOS Computational Bi-
ology, vol. 7, no. 11, 2011.

[13] P. O’Connor et al., “Real-time classification and sen-
sor fusion with a spiking deep belief network,” Fron-
tiers in Neuroscience, vol. 7, no. 7 OCT, pp. 1–13,
2013.

[14] E. Neftci et al., “Event-driven contrastive divergence
for spiking neuromorphic systems,” Frontiers in
Neuroscience, vol. 7, no. January, pp. 1–14, 2014.

[15] T. Matsubara, H. Torikai, and T. Hishiki, “A General-
ized Rotate-and-Fire Digital Spiking Neuron Model
and Its On-FPGA Learning,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 58,
no. 10, pp. 677–681, 2011.

[16] T. Matsubara and H. Torikai, “Neuron-Like Re-
sponses and Bifurcations of a Generalized Asyn-
chronous Sequential Logic Spiking Neuron Model,”
IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, vol.
E95.A, no. 8, pp. 1317–1328, 2012.

[17] ——, “Asynchronous Cellular Automaton-Based
Neuron: Theoretical Analysis and On-FPGA Learn-
ing,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 24, no. 5, pp. 736–748, 2013.

[18] H. Amin, K. Curtis, and H.-G. B.R., “Piecewise linear
approximation applied to nonlinear function of a neu-
ral network,” IEEE Proceedings of Circuits, Devices
System, vol. 144, no. 6, pp. 313–317, 1997.

[19] Xilinx Inc., “Xilinx Inc.” url: http://www.xilinx.com/

- 637 -

