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Abstract—In a coupled Izhikevich neuron model, there
are some parameter regions where each neuron arises fir-
ing at the same time. We observed discontinuous changes
of stability of the solutions in these regions. In this study,
we regard these changes as a bifurcation phenomena. We
present their examples and condition of the bifurcation. Fi-
nally we calculate sets of the bifurcation.

1. Introduction

Izhikevich neuron model[1] can present a lot of general
firing patterns, which is observed in real neurons. In ad-
dition, the model can keep the costs of calculation lower
than the other models. From these reasons, this model is
well used in many researches. For example, Tamura[2] pro-
posed the first result of bifurcation analysis for the model.
On the other hands, Ito[3] suggested a method of bifur-
cation analysis for two-coupled Izhikevich neuron model.
The study[3] is important for the application such that the
neural network. They tried to avoid matching of the two
timing. One is the time at firing and the other is the time at
the Poincaré map. In this study, we focus on this matching.
In coupled Izhikevich neuron model, firings of each neuron
synchronize. The phenomenon has not been observed in [3]
and any other researches. We found that the phenomenon
makes quantitative changes of ω-limit set of the system.
That is, the phenomenon can be regarded as a global bi-
furcation phenomenon. We call this phenomenon as “syn-
chronized bifurcation” in this study. This study shows the
characteristics of this study, the method how we calculate
the bifurcation sets and the changes how it makes to the
ω-limit set of this system.

2. Izhikevich neuron model and its coupled system

The neuron model proposed by Izhikevich[1] is given by
dv
dt

= 0.04v2 + 5v + 140 − u + I
du
dt

= a(bv − u)
(1)

where, v and u are state variables and a, b, I and δ are
parameters. Firing phenomena are realized by following
maps:

if v ≤ 30, then
{

v 7→ c
u 7→ u + d , (2)

where, c measures a voltage after firing and d measures
strength of the restoration.

Gap-junction two-coupled Izhikevich neuron model is
given by

dv
dt
= f (v, a1, δ)

=


0.04v2

1 + 5v1 + 140 − u1 + I − δ(v2 − v1)
a1(b1v1 − u1)
0.04v2

2 + 5v2 + 140 − u2 + I − δ(v1 − v2)
a2(b2v2 − u2)

 (3)

where, v = (v1, u1, v2, u2) is a vector for state variable and
δ is strength of the junction. For each neuron, firings arise
with the following condition:

if vi ≤ 30, then
{

vi 7→ c
ui 7→ ui + d , i = 1, 2 . (4)

On this study a1 and δ are variable and the other are static.

a2 = 0.2, b1 = 0.2, b2 = 0.2, c = −50, d = 2, I = 10. (5)

Figure 1 shows some time waves of system (3), where, ti
is the time when vi fires. Figure 1(a) shows a stable periodic
solution whose t1 > t2. Through undergoing the situation
t1 = t2: synchronized as Fig.1(b), firing order changes as
t1 < t2. Then stability of the solution becomes unstable.
That is, stability of the solution immediately changes since
undergoing the synchronized firing.

3. Changing of stability of periodic solution

To evaluate the stability of periodic solutions in this sys-
tem, the method proposed by Kousaka[4] is strongly ef-
fective. The method[4] can solve the bifurcation prob-
lem of hybrid system. Hybrid system has digital states
(modes) and analog states (states) in its structure. Each
mode transits immediately and discontinuously from one to
the other(s). These changes called mode transition. Each
state evolves by time-continuous or time discrete dynami-
cal system(s).

From the result of previous study[3], let us define the
Poincaré section as follows:

Π0 =
{
v = (v1, u1, v2, u2) ∈ R4 | q(v) = v1 = 0

}
. (6)
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Figure 1: Time waves of v1(red) and v2(blue) with (a)
a1 = 0.168, δ = 0.09: stable 2-periodic solution, (b)
a1 = 0.17, δ = 0.09: synchronized 2-periodic solution and
(c) a1 = 0.171, δ = 0.09: unstable 2-periodic solution.

Let us consider the solutions start from v0 on Π0 and
return to a state on Π0 via m-times mode transition. qk(v) =
0 is a condition equation for k-times mode transition and
Πk = {v | qk(v) = 0} is a manifold expanded by qk(v) = 0.
The solution starting from vk ∈ Πk at the time tk is

vk(t) = φk(t, vk, tk, λ), (7)

where, λ is a certain parameter and

vk(tk) = vk = φk(tk, vk, tk, λ). (8)

Local map from Πk to Πk+1 is

Tk : Πk → Πk+1,
vk 7→ vk+1 = Tk(vk) = φk(tk+1, vk, tk, λ).

(9)

From Eq.(9), the Poincaré map T is expanded as

T = Tm−1 ◦ . . . ◦ T0(v0). (10)

Especially when
T l(v0) − v0 = 0, (11)

the solution v0 is called as l-periodic solution. The Poincaré
map T has some trivial factors related to a normal vector of
Π0. To exclude the factors, let us define local coordinate
system Σ ⊂ Rn−1 and local coordinate u = (u1, v2, u2) ∈ Σ.

p−1 :
Σ → Π0
u 7→ v , p :

Π0 → Σ

v 7→ u . (12)

The Poincaré map on Σ is give by

Tℓ : Σ→ Σ
u 7→ p ◦ T ◦ p−1 . (13)

On local coordinate system, Eq.(11) is

u0 = Tℓ(u0) = p ◦ T ◦ p−1(u0) (14)

The derivative of the Poincaré map T with respect to the
initial value v0 is

DT =
∂Tℓ
∂u0
=
∂p
∂v
∂T
∂v0

∂p−1

∂u0
=
∂p
∂v

m−1∏
k=0

∂Tk

∂vk

∂p−1

∂u0
. (15)

Each derivative is given by

∂Tk

∂vk
=

I − 1
∂qk+1

∂v
f

f
∂qk+1

∂v

 ∂φk

∂vk
(16)

∂p
∂v

=

 0 1 0 0
0 0 1 0
0 0 0 1

 (17)

∂p−1

∂u0
=


0 0 0
1 0 0
0 1 0
0 0 1

 , (18)

where, I is a 4 × 4 identity matrix. ∂φk/∂vk is derived by
following ordinary differential equation:

d
dt
∂φk

∂vk
=
∂ f
∂v
∂φk

∂vk
with

∂φk

∂vk

∣∣∣∣∣
t=tk
= I. (19)

The characteristic equation is given by

χ(µ j) = det
(
DT − µ jI

)
= 0, j = 1, 2, 3, (20)

where, µ j is characteristic multiplier, which measures the
stability of the Poincaré map T . That is, µ j can be an in-
dex of stability of a periodic solution. When ∀ j, |µ j| < 1,
the solution is stable. When ∃ j, |µ j| > 1, the solution is
unstable.

Figure 2 shows a root locus that presents how charac-
teristic multiplier changes by undergoing the synchronized
firing. Each of Fig.2(a)-(b) denotes that the synchronized
firing changes values of all µ j immediately and discontin-
uously. Especially for (a), changes of µ j affect the stability
of solution since µ j goes between the regions where |µ j| > 1
and |µ j| < 1 via the synchronized firing. We call this case
as synchronized bifurcation.

When we focus on the firing order and the product opera-
tion of matrices, the cause of these phenomena is unveiled.
DT of the solutions shown on Fig. 1 is expanded as

∂T
∂v0
=
∂T5

∂v5

∂T4

∂v4

∂T3

∂v3

∂T2

∂v2

∂T1

∂v1

∂T0

∂v0
. (21)

For the case Fig.1(a),

∂T3

∂v3

∂T2

∂v2
=


0 0 0 0

−0.004 0.997 0 0
0.005 0 1.021 −0.019
0.005 0 0.001 0.9962


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Figure 2: Root locus via the synchronized firing on com-
plex plane. Red curves: firing order of the solution is v1 →
v1 → v2 → v2. Blue curves: firing order of the solution is
v1 → v2 → v1 → v2. (a) a1 ∈ (0.159, 0.187), δ = 0.1, (b)
a1 ∈ (0.168, 0.174), δ = 0.09


1.972 −0.163 −1.778 0.144
0.005 0.982 −0.008 0.001

0 0 0 0
0 0 0.006 0.9785


=


0 0 0 0

−0.003 0.979 0 0
0.033 −0.003 −0.029 −0.016
0.01 −0.001 −0.015 0.976

 ,
on the other hand for Fig.1(c),

∂T3

∂v3

∂T2

∂v2
=


1.253 −0.232 0.013 −0.003
0.007 0.966 0.011 −0.001

0 0 0 0
0 0 −0.011 0.9709


0 0 0 0

−0.005 0.980 0 0
−0.681 0.061 1.625 −0.166
−0.008 0.001 0.007 0.974


=


−0.008 −0.226 0.021 −0.005
−0.012 0.947 0.018 −0.003

0 0 0 0
0 0 −0.011 0.938

 .
A change of firing order affects the order of line of ma-
trix, that is, the line constructed only by “0” changes its
order. Since matrix operation does not have commutative,
the change causes not negligible changes on the calculation
results.

4. Bifurcation analysis

Condition equation of the synchronized bifurcation is
given by

t1 − t2 = 0. (22)

Thus, by solving Eq. (14) and Eq. (22) at the same time,
synchronized bifurcation sets of l-periodic solution is ob-
tained. For obtaining the bifurcation set, the Newton’s

method is effective. The method needs DT and ∂ti/∂u0 for
calculation. This factor is derived by previous method[5].

The local bifurcation sets are obtained by solving Eq.
(20) with a condition |µ j| = 1.

Figure 3 shows the result of bifurcation analysis and
Fig.4 presents phase portraits on each points of Fig.3. At
point (a) on Fig.3, there is a stable 1-periodic solution
shown on Fig.4. By undergoing period-doubling bifurca-
tion I1, the solution becomes 2-periodic solution shown on
Fig.4(b) at point (b). When parameters are set at point (c),
there are no stable 2-periodic solutions and we can observe
chaos shown on Fig.4(c). On the region including the point
(d), we can observe a 2-periodic solution shown as Fig.
4(d). When seeing v1-u1 plane, the solution has similar
structure to the solution on Fig. 4(b). When seeing v1-v2
plane, the solutions are exactly different. This is because
the order of firing has changed between these two solutions.
The changing is caused by SF2 in Fig. 3.

5. Conclusion

This study investigated the synchronized firing phenom-
ena(SF) observed in 2-coupled Izhikevich neuron model.
In our research,

• a drastic changing of index for stability of a periodic
solution has arose via SF,

• SF has sometimes made change the stability of a peri-
odic solution: stable to unstable(and vice versa),

• condition of arising SF has been derived,

• a set of parameters where SF arises has been obtained.

For future work, we should try to confirm SF in 3 or
more coupled neuron model.
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Figure 3: Bifurcation diagram with a1 ∈ (0.14, 0.2), δ ∈ (0.08, 0.11). Red solid curves are set of synchronized firing.
Red broken curves are set of synchronized bifurcation. Grey region presents unstable solutions. Blue region presents 1-
periodic solutions. Red region presents 2-periodic solutions. Green region presents 4-periodic solution. Gi means tangent
bifurcation, Ii means period-doubling bifurcation and S Y i means synchronized bifurcation, respectively from i-periodic
solutions.

-5

-4

-3

-2

-1

 0

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

-60 -50 -40 -30 -20 -10  0  10  20  30

(a) (b)

-5

-4

-3

-2

-1

 0

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

-60 -50 -40 -30 -20 -10  0  10  20  30

(c)

-5

-4

-3

-2

-1

 0

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

-60 -50 -40 -30 -20 -10  0  10  20  30

(d)

-5

-4

-3

-2

-1

 0

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

-60 -50 -40 -30 -20 -10  0  10  20  30

Figure 4: Phase portrait of system (3)–(4) on (top) v1 − u1 plane and (bottom) v1 − v2plane. (red points: Poincaré map,
δ = 0.1, (a) 1-periodic solution: a1 = 0.155, (b) 2-periodic solution: a1 = 0.163, (c) chaos: a1 = 0.168, (d) 2-periodic
solution: a1 = 0.195)
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