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Abstract—Reservoir computing (RC) is a machine
learning paradigm based on information processing in the
human brain. Recently, RC based on a semiconductor laser
with time-delayed optical feedback has been proposed. In
this scheme, fast transient response (a fast relaxation time)
of the laser is necessary for fast information processing. By
using numerical and linear stability analysis, in this study,
we show that a semiconductor laser with strong optical in-
jection can produce fast transient response. We also numer-
ically demonstrate that RC based on a semiconductor laser
with optical feedback and strong optical injection enables
fast information processing.

1. Introduction

Delay-based Reservoir Computing (RC) has been pro-
posed as an information processing method using time-
delayed dynamical systems [1–4]. RC is a machine-
learning paradigm that can process empirical data and is
inspired by the way that the brain processes information
[5]. A time-delayed dynamical system is treated as a vir-
tual network, where nodes are considered by temporally
dividing feedback delay with a small interval θ, which is
called a node interval. When an input signal is injected
into the time-delayed dynamical system, the system pro-
duces a transient response and virtual node states can be
obtained from the response. The output of RC is given
by a weighed linear combination of the virtual node states,
where the weights are decided in a training procedure.

The node interval θ = 0.2 ·Tro has been selected in some
literatures [1, 3], where Tro is the characteristic time scale
of the system’s relaxation oscillations (ROs). For smaller
θ, dynamical systems cannot respond to an input signal.
For larger θ, the connectivity among the virtual nodes is
lost. We can increase the information processing speed in
RC using a small θ because a time for processing an input
data point corresponds to N · θ, where N is the number of
nodes. Therefore, time-delayed dynamical systems with
fast ROs are required to enable a smaller θ. In RC using
a semiconductor laser with time-delayed optical feedback,
θ = 0.2 ns has been achieved [3]. The laser’s RO frequency
corresponding to a few GHz enables the small θ.

It has been studied that strong optical injection can en-
hance the RO frequency of an optically injected semicon-
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Figure 1: Schematic diagram of our RC based on coupled
semiconductor lasers.

ductor laser [6]. In this study, we show that the node in-
terval θ can be reduced in RC based on a semiconductor
laser with time-delayed optical feedback and optical injec-
tion when the optical injection strength is strong.

In addition, we investigate the dependence of the perfor-
mance of our RC on the injection strength and the initial
optical frequency detuning between the laser with optical
injection and the injected light. It has been known that
the initial detuning affects synchronization properties and
consistency in coupled semiconductor lasers [7,8]. It is ex-
pected that the initial detuning also affects transient dynam-
ics in the laser and the information processing performance
of RC.

2. Numerical simulation method for RC with semicon-
ductor lasers

2.1. Delay-based RC method

Figure 1 shows the schematic diagram of our RC sys-
tem. The system is composed of an input layer, a reservoir,
and an output layer. The reservoir is a semiconductor laser
(called the response) with time-delayed optical feedback
and optical injection from another laser (called the drive).
N virtual nodes are considered by temporally dividing the
feedback delay time τ. A time interval for the division is θ
and is called the node interval.

In the input layer, time-discrete input data sn (n is the
discrete time) are multiplexed by a temporal mask signal.
The mask signal is a step waveform which has a period τ.
The step interval of the mask signal is equal to the node
interval θ. The mask values are randomly selected from the
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values {−1,−0.6, 0.6, 1.0}.
A weighed linear combination of virtual node states is

calculated in the output layer and is the output of the reser-
voir. The output y(n) for the n-th input data is given by the
following equation,

y(n) =
N∑

j=1

w jx j(n), (1)

where x j are the node states and w j are the weights for j-th
node. The node states x j are sampled at the center of the
node interval θ in the temporal output of the response laser.
The weights w j are trained by minimizing the mean-square
error between the target function ȳ(n) and the reservoir out-
put y(n) as follows,

1
Ntr

Ntr∑
j=1

(y(n) − ȳ(n))2 → min, (2)

where Ntr is the number of input data for training.
To evaluate the performance of our RC scheme, we

use the Santa-Fe time-series prediction task [1–4]. The
aim of the task is to perform single-point-prediction of
chaotic time-series. The time-series is generated from a far-
infrared laser. We use 3,000 points for training and 1,000
points for testing.

The performance of the prediction task is quantita-
tively evaluated by using the normalized mean-square error
(NMSE) as follows,

NMS E =
1

Nte

∑Nte
j=1 (y(n) − ȳ(n))2

σ2 , (3)

where Nte is the number of input data in the test procedure.
σ is the standard deviation of ȳ(n). The NMSE represents
the difference between the target ȳ(n) and the output y(n) of
RC, and a NMSE close to zero indicates a low prediction
error.

2.2. Numerical model of the response laser

We consider two unidirectionally coupled semiconduc-
tor lasers, which are called drive and response. The drive
laser solitarily operates so that the laser shows temporally
constant intensity. The constant output of the drive laser
is unidirectionally injected into the response laser, which
also have time-delayed optical feedback. We consider the
dynamics of the response laser since the output of the drive
laser is constant. The rate equations for the response laser
are written as follows [9]:

dEr(t)
dt

=
1 + iα

2

[
GN(Nr(t) − N0)

1 + ϵ|Er(t)|2
− 1
τp

]
Er(t)

+ κEr(t − τ) exp[−iφ]
+ σ(1 + S (t))Ad exp[i∆ωt] + ξ(t), (4)

dNr(t)
dt

= Jr −
Nr(t)
τs
−GN(Nr(t) − N0)|Er(t)|2, (5)

where E is the slowly varying complex electric field am-
plitude and N is the carrier density. The subscripts d and
r represent the drive and response lasers, respectively. GN

is the gain coefficient, N0 is the carrier density at trans-
parency, α is the linewidth enhancement factor, τp is the
photon lifetime, τs is the carrier lifetime, and Jr is the in-
jection current of the response laser. The injection current
is given by Jr = 1.05Jth, where Jth is the injection current
at the lasing threshold. ωr is the angular optical frequency
of the response laser. These parameter values are set to the
same as in [8].

Optical feedback is related to the second term in the right
hand side of Eq. (4). κ and τ in the term are the feedback
strength and the feedback delay time, respectively. The de-
lay time is given by the product of the number of nodes
N and the node interval θ in RC. In this study, the number
of nodes is two hundreds and the node interval is varied,
which results in τ = 200 · θ. φ is the feedback phase and
fixed at zero for simplicity.

The third term in the right hand side of Eq. (4) represents
optical injection, through which an input signal is injected.
σ is the optical injection strength. ∆ω is the angular optical
frequency detuning between the drive and response lasers
and given by ∆ω = 2π∆ fini, where ∆ fini is the initial optical
frequency detuning and is changed in our study. Ad is the
constant electric field amplitude of the drive laser and is
calculated from steady state solutions of a solitary laser. In
the calculation of the solutions, the injection current Jd of
the drive laser is 1.30Jth and other parameter values are the
same as the response laser.

3. Numerical results on RC for chaotic time-series pre-
diction task

3.1. Dependence of RC performance on node interval

We numerically show that strong optical injection in-
duces fast oscillations in the transient response of the laser,
which results in a broad probability distribution in node
states. We also investigate the dependence of the NMSE on
the node interval θ for weak and strong injection strengths.
It is shown that a minimum NMSE is obtained at a smaller
θ for strong optical injection comparing with weak one.

We firstly show the temporal waveforms of the intensity
I(t) = |Er(t)|2 in the response laser when the input signal
shown in Fig. 2(a) is injected. Figures 2(b) and 2(c) show
the temporal waveforms when the node interval θ is 0.03 ns.
The optical injection strengths are 5 ns−1 and 40 ns−1 for
Figs. 2(b) and 2(c), respectively. The red circles represent
the node states. Since the number of nodes is two hundreds,
the feedback delay time is τ = 200θ̇ = 6 ns. The initial
optical frequency detuning ∆ fini is fixed at 0 GHz. The
feedback strengths κ are 1 ns−1 and 22 ns−1 for (b) and (c),
respectively.

For the weak injection strength in Fig. 2(b), oscillations
in the waveform are slow in comparison with the input sig-
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Figure 2: (a) A temporal waveform of a masked input sig-
nal. (b), (c) The temporal waveforms of the response in-
tensity. The injection strengths σ are 5 ns−1 and 40 ns−1

for (b) and (c), respectively. The red circles represent node
states. The node interval θ is 0.03 ns. (d), (c) Probability
distributions of the node states. The distributions (d) and
(c) correspond to (b) and (c), respectively.

nal. On the other hand, fast oscillations corresponding to
the input signal are observed in the waveform shown in Fig.
2(c) for the strong optical injection. The fast oscillations
result from fast ROs due to the strong optical injection [6].
When the injection strength is weak, the laser cannot re-
spond to the input signal since the RO frequency of the
laser is slower than the modulation frequency of the input
signal.

When oscillations in the transient response is slow, as
shown in Fig. 2(b), the width of the probability distribution
of node states becomes narrow. Figures 2(d) and 2(e) show
the probability distributions of node states corresponding
to Figs. 2(b) and 2(d), respectively. It is found that the nar-
row distribution is obtained for the weak injection strength
in comparison with the strong one. The narrow distribu-
tion indicates that the variety of node states is not rich,
which causes reduction of the RC performance. The NM-
SEs for the weak and strong injection strength are 0.148
and 0.038, respectively. Thus, the better performance is
obtained when node states have a broad distribution.

We show the dependences of the NMSE on the node in-
terval θ for strong and weak optical injection and investi-
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Figure 3: NMSE as a function of the node interval θ. The
injection strengths σ are 5 ns−1 and 40 ns−1 for (a) and (b),
respectively. The delay time is also varied with the change
of θ through the relationship of τ = N · θ.

gate the interval at which the minimum value of the NMSE
is obtained. Figures 3(a) and 3(b) show the dependences
when the optical injection strengths are weak (σ = 5 ns−1)
and strong (σ = 40 ns−1), respectively. The minimum NM-
SEs are obtained at θ = 0.18 ns and 0.03 ns for the weak
and strong injection strength, respectively. This result indi-
cates that strong optical injection enables us to use a small
θ.

3.2. Dependence of RC performance on coupling pa-
rameters

Strong optical injection can induce injection locking in
coupled semiconductor lasers. In RC with the laser, in-
jection locking is necessary for consistency and keeping
the laser stable when the injected light into the laser is not
modulated. The injection strength σ and the initial optical
frequency detuning ∆ fini are important parameters for in-
jection locking. In this section, we show injection locking
region in the two-dimensional parameter space and investi-
gate the dependence of the NMSE on the two parameters.

Injection locking can be identified by the optical fre-
quency detuning between the drive and response lasers un-
der coupling. The detuning ∆ fc is given by the following
equation,

∆ fc = ∆ fini +
∆ϕ(t) − ∆ϕ(t − Ta)

2πTa
, (6)

where ∆ϕ(t) is the phase difference between the drive and
response lasers and is given by ϕd(t) − ϕr(t). ϕ(t) is the
phase of the complex electric field amplitude E(t) and the
subscripts d and r represent the drive and response lasers,
respectively.. Since the optical output of the drive laser
is temporally constant, ϕd(t) is also temporally constant,
which results in ∆ϕ(t) = −ϕr(t). Ta is a time for the conver-
gence of ∆ fc and Ta = 50000 ns is used in our numerical
simulation. ∆ fc = 0 indicates the match of the optical fre-
quencies of the drive and response lasers, that is, injection
locking.

Figure 4(a) shows injection locking region on the two-
dimensional space of the injection strength σ and the ini-
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Figure 4: (a) Two-dimensional map of |∆ fc| ≤ 0.1 GHz
on the parameter space of the injection strength σ and
the initial optical frequency detuning ∆ fini. A region with
|∆ fc| ≤ 0.1 GHz is shown by the gray color. (b) NMSE
corresponding to (a).
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Figure 5: Two-dimensional map of the conditional Lya-
punov exponent λc corresponding to Fig. 4.

tial optical frequency detuning ∆ fini when the injected light
into the response laser is not modulated. In the gray region,
|∆ fc| ≤ 0.1 GHz is obtained and ∆ fc close to zero results
from injection locking. An asymmetric property for ∆ fini

is observed and negative detuning makes it easy to achieve
injection locking. This property results from a large α of
the laser.

The two-dimensional map of the NMSE corresponding
to Fig. 4(a) is shown in Fig. 4(b). White and black colors
in the map represent small and large NMSEs, respectively.
A large NMSE represented by the black color is obtained
outside the gray region shown in Fig. 4(a). It indicates that
the performance of RC deteriorates when injection locking
does not occur. A small NMSE represented by the white
color is obtained near the boundary between the gray and
white regions shown in Fig. 4(a) inside the gray region. It’s
worth noting that a small NMSE is not obtained at the side
of negative detunings but is obtained at the side of positive
ones.

The dependence of the NMSE on ∆ fini can be explained
using the conditional Lyapunov exponent [8] for a synchro-
nized solution between the response laser and its auxiliary
system [10]. The conditional Lyapunov exponent is an ex-
ponential convergence (growth) rate of perturbations to a
synchronized solution and a negative exponent indicates
that the synchronized solution is stable. A negative value

of the exponent is necessary for consistency. The exponent
close to zero is also required.

Figure 5 shows the conditional Lyapunov exponent λc

corresponding to the two-dimensional map of σ and ∆ fini

when the injected light into the response laser is not mod-
ulated. From comparing to Fig. 4(a), the region with
λc ≤ 0.0 corresponds to the injection locking region shown
by the gray region. λc around the boundary with λc = 0.0
shows gradual changes at the side of positive detunings and
sudden changes at the side of negative ones. Thus, a neg-
ative λc close to zero is obtained at the side of positive de-
tunings, which results in a small NMSE shwon in Fig. 4(b).

4. Conclusion

In this study, we numerically demonstrated RC with a
semiconductor laser with time-delayed optical feedback
and strong optical injection. The performance of RC was
quantitatively evaluated using the chaotic time-series pre-
diction task. It was shown that strong optical injection in-
duces fast oscillations in the transient response of the laser,
which enables a small node interval in RC. We also in-
vestigated the dependence of the RC performance on the
injection strength and the initial optical frequency detun-
ing. Strong optical injection induces injection locking in
the laser and high performance of RC can be obtained in an
injection locking region on the two-dimensional parameter
space. A positive detuning near the boundary of injection
locking is also required for high performance of RC.
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