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Abstract—We study clustering problem of vertices on
graph by Bayesian inference. In Bayesian framework of
clustering, stochastic block model is a standard for con-
struction of likelihood. Here we start with a variant of
stochastic block model by Karrer and Newman for theoret-
ical discussion. It is known that naı̈ve log-likelihood from
their model does not always give natural clustering. We
discuss how to modify it by adding correction term. By
numerical experiment, we verify advantage of our method.

1. Introduction

Clustering is one of the main topics of unsupervised
machine learning. In particular, clustering of vertices on
graph, which we refer to as network clustering in this ar-
ticle (often termed as community detection generally), is
also of great importance for extracting blockwise structure
of real world network.

The idea of network clustering is not clearly defined
mathematically in general. Its goal is to extract natural
clusters for human sense. Toward this goal, several meth-
ods have been proposed and frequently used such as maxi-
mization of modularity[1] or spectral clustering[2].

Among them, we focus on Bayesian inference. In this
framework, a probabilistic model of network under given
network parameter is necessary, and stochastic block model
(SBM)[3, 4] is a standard for the purpose. There are many
variants of SBM in the definition of network probability,
and we follow the one by Karrer and Newman[5] for theo-
retical discussion. The advantage of their SBM is its ana-
lytical simplicity: We can optimize some model parameters
analytically and remove them from the model. As a result,
remaining parameters are only the numbers of edges be-
tween/within clusters and the numbers of vertices in one
cluster, and we maximize log-likelihood with respect to
them to extract clusters. However it is reported that such
näıve approach sometimes yields unnatural clusters. One
way to cope with this problem is the replacement of their
SBM to another, while we must avoid overfitting due to
overcomplex model with many additional model parame-
ters.

We attempt another approach here: We make an appro-
priate choice of information criterion. In general Bayesian
inference framework, several famous information criteria
are frequently used, where correction term is added to log-
likelihood. In our problem the same approach can be taken

naturally. However, it should be noted that for network
clustering there may be an appropriate information crite-
rion among many possibilities.

In this article we propose a form of correction term for
natural network clustering, which originates from intuitive
discussion. Using log-likelihood with our correction term,
we conduct numerical experiment of network clustering
for real network data, and compare the result with naı̈ve
method. We also discuss the relationship of our method
with other works[6, 7, 8], where other information criteria
are derived and proposed by theoretical argument.

2. Model

2.1. Näıve SBM

The probability of näıve SBM in [5] is given by

PSBM(G|ω, g) :=
∏
i< j

(ωgi ,g j )
Ai j

Ai j !
exp(−ωgi ,g j )

×
∏

i

( 1
2ωgi ,g j )

Aii /2

(Aii/2)!
exp

(
−1

2
ωgi ,g j

)
. (1)

Roman subscriptsi, j describe vertices on network.Ai j is
(i j )-element of network adjacency matrix.gi is cluster in-
dex to which vertexi belongs.ωgi ,g j is the expectation value
of the number of edges between clustersgi andg j , under
the condition that the number of edges between vertex pair
is independently Poisson distributed. The symbolsG, ω
andg on l.h.s. denote a network sample, the set ofωi j , and
the set ofgi(= cluster assignment index on each vertex),
respectively.

Näıve Bayesian network clustering is based on the max-
imization of the log-likelihood with respect toω, g under a
given network sampleG.

LSBM(G|ω, g) := logPSBM(G|ω, g). (2)

After maximization with respect toω analytically, the max-
imum log-likelihood is expressed as

LSBM(G|g) := maxω
{
logPSBM(G|ω, g)

}
=

∑
αβ

mαβ log
mαβ
nαnβ
, (3)

where
mαβ :=

∑
i j

Ai jδgi ,αδg j ,β, (4)
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is the number of edges between clusters indexed by Greek
lettersα, β, andnα is the number of vertices in clusterα.
Then, our task is to maximize log-likelihood in (3) for a
given G with respect to cluster assignmentg, or equiva-
lently the set of variables{mαβ,nα}.

Näıve SBM in [5] is suitable for theoretical analysis or
argument, however it generates the network without natural
clusters. Therefore this model must be corrected.

2.2. Degree-corrected SBM

Degree-corrected SBM is also proposed in [5] as a vari-
ant of näıve SBM, where the probability of networkG is
replaced by

PDC−SBM(G|θ,ω, g) :=
∏
i< j

(θiθ jωgi ,g j )
Ai j

Ai j !
exp(−θiθ jωgi ,g j )

×
∏

i

( 1
2θ

2
i ωgi ,g j )

Aii /2

(Aii/2)!
exp

(
−1

2
θ2i ωgi ,g j

)
.

(5)

θi is the expected value of degree(= the number of con-
nected edges) for vertexi, andθ is the set ofθi . After
maximization with respect toθ and ω analytically, log-
likelihood becomes

LDC−SBM(G|g) := maxω,θ
{
logPDC−SBM(G|ω,θ, g)

}
=

∑
αβ

mαβ log
mαβ
κακβ
, (6)

where κα is the sum of all vertex degrees in clusterα.
Although we introduce novel parameter setθ, the final
expression of log-likelihood is as simple as the original
näıve model:nα is just replaced byκα. Therefore, degree-
correlated SBM is regarded as the simplest variant of naı̈ve
SBM.

With this modification, we can extract more natural clus-
ters in comparison with naı̈ve SBM, however it still fails to
extract clusters in some graphs.

3. Method

We start our discussion with log-likelihoods of naı̈ve
SBM (3) or degree-correlated SBM (6). For appropriate
information criteria, we add correction terms to these log-
likelihoods as follows,

L∗SBM(G|g) := LSBM(G|g) +
∑
α

mαα −
∑
α<β

mαβ.

(7)

L∗DC−SBM(G|g) := LDC−SBM(G|g) +
∑
α

mαα −
∑
α<β

mαβ.

(8)

Intuitively, the first correction term enhances the density
of edges inside single cluster, and the second correction

Figure 1: The result of clustering for a designed network.
Left: Clusters by maximization ofLDC−SBM(G|g). Right:
Clusters by maximization ofL∗DC−SBM(G|g). Vertices on
shaded background belong to the same cluster.

term penalizes the intertwining edges between clusters. By
maximizing the log-likelihood with these correlations, ex-
traction of more natural clusters is expected.

The advantage of such correction terms is that we do
not need to introduce novel network parameters. We only
usemαβ in correction terms, which has already been in the
original log-likelihood. This is desirable for avoiding over-
complex modeling. On the other hand, we should keep in
mind that arbitrary multiplication factors can be introduced
to correction terms. We set them unity in this article.

4. Numerical Experiment

4.1. Clustering of artificial network

First, we prepare several artificial small-size networks,
in which clusters are obvious. An example of artificial net-
work is shown in Figure 1. We extract the clusters by max-
imizing LDC−SBM or L∗DC−SBM, where the number of clus-
ters(= two) is known in advance. For maximization, we
conduct exhaustive search in this experiment.

The result is depicted in the same figure. Log-likelihood
with correlationL∗DC−SBM yields natural clusters, whereas
näıve log-likelihoodLDC−SBM gives unnatural ones. We
also attempted other artificial networks having similar net-
work/cluster structure, and found thatL∗DC−SBM is also
more successful. Hence we conclude that our method can
cure the defect in the naı̈ve model.

In Figure 1, vertices in the same cluster are not mutually
intertwined by many edges. By naı̈ve SBM, such networks
will be generated only with very low probability, therefore
we cannot extract natural clusters. By incorporating cor-
rection terms, we can avoid unnatural results.

4.2. Clustering of small size network dataset

Next we apply our method to real network data of rel-
atively small size (the number of vertices is 101 ∼ 102).
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(A) (B) (C)
LDC−SBM(G|g) L∗DC−SBM(G|g) both

”Karate Club” 0.06 0.27 0.04
”Dolphin” 0.01 0.16 0.04

Table 1: Clustering result of Zachary’s ”Karate club”
dataset and ”Dolphin” dataset. We search global maximum
of LDC−SBM(G|g) or L∗DC−SBM(G|g) with 100 random ini-
tial conditions. We show the successful ratio of three cases:
(A) Global maximum is found only forLDC−SBM(G|g). (B)
Only forL∗DC−SBM(G|g). (C) For both.

We use Zachary’s ”Karate club” dataset[9] (34 vertices),
and ”Dolphin” dataset[10] (62 vertices). There is the cor-
rect answer of clustering only for ”Karate club” dataset,
where two clusters exist. We extract the clusters on these
networks by maximizingLDC−SBM orL∗DC−SBM, and by as-
suming again the number of clusters is two and known, al-
though ”Dolphin” dataset is thought to have more commu-
nities (i.e. we focus on the largest two clusters).

For extraction, we use Kernighan-Lin algorithm[11]. In
this algorithm we select the most relevant vertex to increase
LDC−SBM(G|g) orL∗DC−SBM(G|g) by the change of its clus-
ter assignment, then actually move it to another cluster. We
repeat it until reaching local (or sometimes global) maxi-
mum ofLDC−SBM(G|g) orL∗DC−SBM(G|g). We perform this
algorithm under 100 random initial cluster assignments,
and among 100 final resulting assignments we regard the
largestLDC−SBM(G|g) or L∗DC−SBM(G|g) as global maxi-
mum, which appears under several initial conditions.

As a result, we finally reach the same cluster assign-
ments both byLDC−SBM(G|g) and byL∗DC−SBM(G|g) for
”Karate club” and ”Dolphin” datasets. In addition, the final
cluster assignments are natural. (For ”Karate club”, only
one vertex is misclassified.) However, the successful ratios
of reaching global maximum from 100 initial assignments
are different, as summarized in Table 1. This means that
natural cluster assignment can be found by corrected log-
likelihood L∗DC−SBM(G|g) more easily than the naı̈ve one
LDC−SBM(G|g).

4.3. Clustering of large size network dataset

Next we apply our method to real network data of rela-
tively large size (the number of vertices is 102 ∼ 103). We
use the datasets as follows:

• ”football”[12] (114 vertices, 1224 edges)

• ”euroroad”[13] (1174 vertices, 2834 edges)

• ”netscience”[14](1460 vertices, 5484 edges)
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Figure 2: Clustering result of large size network
dataset. Top: ”football”, Middle: ”euroroad”, Bottom:
”netscience”.

Here we assume the number of clusters (denoted byK)
is unknown, which must be determined. For this purpose,
we maximize the following quantities with respect toK:

• LSBM in (2)

• L∗SBM in (7)

• Factorized Information Criterion (FIC)[7, 8]: It is pro-
posed for factorized asymptotic Bayesian inference
and can be applied to network clustering by SBM for
determination of optimalK.
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• FIC with our correction term like (7) and (8) (denoted
by FIC∗ in Figure 2)

In this experiment, we first fixK and maximize these quan-
tities. For maximization, we perform simulated annealing
under a single random initialization of cluster assignment.
Then we varyK and search the maximum with respect to
K as well.

The result is depicted in Figure 2. The ratio of each
quantity toK = 10 is shown on the vertical axis. It should
be noted that the maximum of the original quantity is de-
picted as minimum, because all quantities are computed as
negative.

For ”football”, LSBM andL∗SBM do not give the mini-
mum. On the other hand, ICL and ICL∗ give the minimum
aroundK = 10. The result ofK = 10 seems quantitatively
natural for the size of this dataset from the viewpoint of
unsupervised learning, although we do not show the pic-
ture of clustering result here. For ICL∗, the curvature of the
graph around minimum seems larger than ICL, therefore
this implies our method helps the determination ofK by an
arbitrary optimization algorithm.

We cannot find a clear minimum for other two datasets,
however, for ”euroroad” there might be a minimum in the
range of 10< K < 20, and the experiment with high pre-
cision will be desired. For ”netscience”, the experiment of
higherK will be necessary for finding a minimum.

5. Summary and discussion

We proposed an alternative to naı̈ve log-likelihood for
network clustering. By the result of numerical experiment,
we verified our log-likelihood with correction yields more
natural result of network clustering, or enables us to find
natural clusters more easily.

Information criteria for network clustering are also pro-
posed in preceding works, and FIC is one of them. In [8],
the higher order correction to FIC under Laplace approxi-
mation is calculated under sparse network structure. Their
resulting criterion is termed F2IC in their article, where the
number of edges between clusters plays a significant role
like our method. These criteria are obtained analytically,
and we must discuss the relation between our method with
them as a future work.
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