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Abstract—We study clustering problem of vertices onnaturally. However, it should be noted that for network
graph by Bayesian inference. In Bayesian framework daflustering there may be an appropriate information crite-
clustering, stochastic block model is a standard for comion among many possibilities.
struction of likelihood. Here we start with a variant of In this article we propose a form of correction term for
stochastic block model by Karrer and Newman for theoretiatural network clustering, which originates from intuitive
ical discussion. It is known that hee log-likelihood from discussion. Using log-likelihood with our correction term,
their model does not always give natural clustering. Weve conduct numerical experiment of network clustering
discuss how to modify it by adding correction term. Byfor real network data, and compare the result witlivaea
numerical experiment, we verify advantage of our methodnethod. We also discuss the relationship of our method

with other works[6, 7, 8], where other information criteria
1. Introduction are derived and proposed by theoretical argument.

Clustering is one of the main topics of unsupervised.  Model
machine learning. In particular, clustering of vertices on
graph, which we refer to as network clustering in this ar2.1. Nave SBM
ticle (often termed as community detection generally), is

also of great importance for extracting blockwise structure The probability of néave SBM in [5] is given by

of real world network. (wg.g;)™
The idea of network clustering is not clearly defined Psem(Glw.g) = | | TeXp(—wgi,gj)
mathematically in general. Its goal is to extract natural <) :
clusters for human sense. Toward this goal, several meth- (%wgi,g,v)/*‘/z 1
ods have been proposed and frequently used such as maxi- U (Ai/2)! eXp(_Ewgi’gi)' (1)

mization of modularity[1] or spectral clustering[2].
Among them, we focus on Bayesian inference. In thiRoman subscripts j describe vertices on networky; is
framework, a probabilistic model of network under giver{ii)-element of network adjacency matrig; is cluster in-
network parameter is necessary, and stochastic block mo@éx to which vertexbelongs wyg, g, is the expectation value
(SBM)[3, 4] is a standard for the purpose. There are marfjf the number of edges between clustgrandg;, under
variants of SBM in the definition of network probability, the condition that the number of edges between vertex pair
and we follow the one by Karrer and Newman(5] for theoiS independently Poisson distributed. The symi®)so
retical discussion. The advantage of their SBM is its ana@Ndg on |.h.s. denote a network sample, the sebigfand
lytical simplicity: We can optimize some model parameteréne set ofgi(= cluster assignment index on each vertex),
analytically and remove them from the model. As a resulf€spectively.
remaining parameters are only the numbers of edges be-Néive Bayesian network clustering is based on the max-
tweeniwithin clusters and the numbers of vertices in ondMization of the log-likelihood with respect to, g under a
cluster, and we maximize log-likelihood with respect tddiven network sampl&.
th?m to extract cluster's. Hov_vever it is reported that such Lsau(Glw, g) := 10g Psam(Glw, g). )
nave approach sometimes yields unnatural clusters. One
way to cope with this problem is the replacement of theiAfter maximization with respect t@ analytically, the max-
SBM to another, while we must avoid overfitting due tomum log-likelihood is expressed as
overcomplex model with many additional model parame-

Lsem(Glg) = max, {logPsem(Clw, g)}
ters. Mg
We attempt another approach here: We make an appro- = Z Mz log —— 3)
priate choice of information criterion. In general Bayesian ap o B

inference framework, several famous information criterigynere
are frequently used, where correction term is added to log- Mys = Z AijSg 00,5 )
likelihood. In our problem the same approach can be taken g A
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is the number of edges between clusters indexed by Greek
lettersa, B, andn, is the number of vertices in clustet
Then, our task is to maximize log-likelihood in (3) for a
given G with respect to cluster assignmegit or equiva-
lently the set of variable@n,s, n,}.

Naive SBM in [5] is suitable for theoretical analysis or
argument, however it generates the network without natural
clusters. Therefore this model must be corrected.

2.2. Degree-corrected SBM

Degree-corrected SBM is also proposed in [5] as a vari-
ant of ndve SBM, where the probability of netwoK& is
replaced by
(6160w o ™ Figure 1: The result of cllust.ering for a designed network.
Poc_sem(GlO, w, g) = l_[ At b LA exp(6ifjwg )  Left Clusters by maximization afoc-sem(CGlg). Right:
i< Aij! Clusters by maximization of’j- <5\ (Glg). Vertices on
(%szgi gj)pﬁ/z shaded background belong to the same cluster.

| | 1 2
X i W eXp(—EHi wgi,gj) .
(5) term penalizes the intertwining edges between clusters. By

maximizing the log-likelihood with these correlations, ex-
6; is the expected value of degreethe number of con- traction of more natural clusters is expected.

nected edges) for vertex and @ is the set ofg;. After The advantage of such correction terms is that we do
maximization with respect t@ and w analytically, log- not need to introduce novel network parameters. We only
likelihood becomes usem, in correction terms, which has already been in the
) original log-likelihood. This is desirable for avoiding over-
Loc-sem(Glg) = max,p{logPoc-sem(Clw.0.9)} 5mplex modeling. On the other hand, we should keep in
= Z My l0g Mg , (6) mind that arbitrary multiplication factors can be introduced
ap KaKp to correction terms. We set them unity in this article.

wherek, is the sum of all vertex degrees in cluster _ _
Although we introduce novel parameter gktthe final 4. Numerical Experiment
expression of log-likelihood is as simple as the original . e
nave model:n, is just replaced by,. Therefore, degree- 4.1. Clustering of artificial network

correlated SBM is regarded as the simplest variant dfena  First, we prepare several artificial small-size networks,
SBM. in which clusters are obvious. An example of artificial net-

With this modification, we can extract more natural cluswork is shown in Figure 1. We extract the clusters by max-
ters in comparison with rige SBM, however it still fails to  imizing Lpc_sgw or Li_spy» Where the number of clus-

extract clusters in some graphs. ters& two) is known in advance. For maximization, we
conduct exhaustive search in this experiment.
3. Method The result is depicted in the same figure. Log-likelihood

with correlationL_g,, Yields natural clusters, whereas
We start our discussion with log-likelihoods ofim@ nave log-likelihood £pc_sgw gives unnatural ones. We
SBM (3) or degree-correlated SBM (6). For appropriatéilso attempted other artificial networks having similar net-
information criteria, we add correction terms to these logwork/cluster structure, and found thal. g, is also

likelihoods as follows, more successful. Hence we conclude that our method can
cure the defect in the ina&e model.
. _ In Figure 1, vertices in the same cluster are not mutually
Lspw(Glg) = Lsem(Glg) + Z{l: Mea Zﬁ M- intertwined by many edges. By ive SBM, such networks

7) will be generated only with very low probability, therefore
we cannot extract natural clusters. By incorporating cor-
Lpc-sem(Glg) + Z Myo — Z Mys.  rection terms, we can avoid unnatural results.
a a<p

bc_sem(Glg)

(8) 4.2. Clustering of small size network dataset

Intuitively, the first correction term enhances the density Next we apply our method to real network data of rel-
of edges inside single cluster, and the second correctiatively small size (the number of vertices is'10 10?).
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(A) (B) © L T f,smf |
Lpc-sem(Glg) EC—SBM(G|g) both FIC ——m-
"Karate Club” 0.06 0.27 0.04 FIC —

"Dolphin” 0.01 0.16 0.04 |

=10

Ratio to K:

Table 1: Clustering result of Zachary's "Karate club”
dataset and "Dolphin” dataset. We search global maximum
of Lpc-sem(Glg) or L ggu(Glg) with 100 random ini-

tial conditions. We show the successful ratio of three cases:
(A) Global maximum is found only fopc-sem(Glg). (B)
Only for L sgu(Glg). (C) For both.

We use Zachary's "Karate club” dataset[9] (34 vertices),
and "Dolphin” dataset[10] (62 vertices). There is the cor-
rect answer of clustering only for "Karate club” dataset,
where two clusters exist. We extract the clusters on these
networks by maximizingCpc_sgm Of L{ gy @and by as-
suming again the number of clusters is two and known, al-
though "Dolphin” dataset is thought to have more commu-
nities (i.e. we focus on the largest two clusters).

For extraction, we use Kernighan-Lin algorithm[11]. In
this algorithm we select the most relevant vertex to increase
Loc-sem(Clg) or L sy(Glg) by the change of its clus- A
ter assignment, then actually move it to another cluster. We K
repeat it until reaching local (or sometimes global) maxi- s : : : : : : : :
mum of Lpc-sem(Glg) or L spu(Glg). We perform this i
algorithm under 100 random initial cluster assignments,
and among 100 final resulting assignments we regard the ;|
largest Loc-sem(Glg) or L. <gu(Glg) as global maxi-
mum, which appears under several initial conditions.

As a result, we finally reach the same cluster assign-
ments both byLpc_sem(Glg) and by Lf . ¢gu(Glg) for
"Karate club” and "Dolphin” datasets. In addition, the final il
cluster assignments are natural. (For "Karate club”, only
one vertex is misclassified.) However, the successful ratios
of reaching global maximum from 100 initial assignments A T— ‘ s >
are diferent, as summarized in Table 1. This means that K
natural cluster assignment can be found by corrected log-
likelihood L5 sg),(Glg) more easily than the i one Figure 2: Clustering result of large size network

=10

Ratio to K:

=10

Ratio to K:

09 +

Lpc_sem(Glg). dataset. Top: "football”, Middle: "euroroad”, Bottom:
"netscience”.
4.3. Clustering of large size network dataset Here we assume the number of clusters (denote oy

is unknown, which must be determined. For this purpose,

~ Next we apply our method to real network data of relaye maximize the following quantities with respectio
tively large size (the number of vertices is?10 10%). We

use the datasets as follows: e Lsgvin(2)

o "football’[12] (114 vertices, 1224 edges) o Ligyin(7)

¢ Factorized Information Criterion (FIC)[7, 8]: Itis pro-
posed for factorized asymptotic Bayesian inference
and can be applied to network clustering by SBM for
e "netscience”[14](1460 vertices, 5484 edges) determination of optimaK.

e "euroroad’[13] (1174 vertices, 2834 edges)
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e FIC with our correction term like (7) and (8) (denoted [2] J. Shi and J. Malik: "Normalized Cut and Image Seg-

by FIC" in Figure 2)

In this experiment, we first fik and maximize these quan-
tities. For maximization, we perform simulated annealing[3]
under a single random initialization of cluster assignment.
Then we varyK and search the maximum with respect to

K as well.

The result is depicted in Figure 2. The ratio of each [4]
guantity toK = 10 is shown on the vertical axis. It should
be noted that the maximum of the original quantity is de-
picted as minimum, because all quantities are computed ag]

negative.
For "football”, Lsgu and Lgg,, do not give the mini-
mum. On the other hand, ICL and IChive the minimum

mentation,”|IEEE Trans. Pattern Analysis and Ma-
chine Intelligencevol.22, pp.888-905, 2000.

P. W. Holland, K. B. Laskey, and S. Leinhardt,
"Stochastic Blockmodels: First StepsSocial Net-
works vol.5, pp.109-137, 1983.

S. Wasserman and C. J. Anderson, "Stochastic a Pos-
teriori Blockmodels: Construction and Assessment,”
Social Networksvol.9, pp.1-36, 1987.

B. Karrer and M. E. J. Newman, "Stochastic Block-
models and Community Structure in Networks,”
Phys. Rev. Evol.83, 016107, 2011.

aroundK = 10. The result oK = 10 seems quantitatively [6] J. J. Daudin, F. Picard, and S. Robin, "A Mixture-

natural for the size of this dataset from the viewpoint of
unsupervised learning, although we do not show the pic-

ture of clustering result here. For ICLthe curvature of the

graph around minimum seems larger than ICL, therefor

this implies our method helps the determinatiorkdby an
arbitrary optimization algorithm.

We cannot find a clear minimum for other two datasets,
however, for "euroroad” there might be a minimum in the g
range of 10< K < 20, and the experiment with high pre-
cision will be desired. For "netscience”, the experiment of

higherK will be necessary for finding a minimum.

5. Summary and discussion

We proposed an alternative toima log-likelihood for

network clustering. By the result of numerical experimen
we verified our log-likelihood with correction yields more
natural result of network clustering, or enables us to find

natural clusters more easily.

Information criteria for network clustering are also pro-
posed in preceding works, and FIC is one of them. In [8],
the higher order correction to FIC under Laplace approxi-
mation is calculated under sparse network structure. Theit1]

resulting criterion is termedkC in their article, where the

number of edges between clusters plays a significant role
like our method. These criteria are obtained analytically,
and we must discuss the relation between our method wit

them as a future work.
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