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Abstract—In this paper, a multi-compartment neuron
model based on the concept of an asynchronous bifurcation
processor is studied. It is shown that the model can repro-
duce typical propagation phenomena of membrane poten-
tials between somas and dendrites of neurons such as for-
ward propagations of action potentials from dendrites and
resulting backward propagations of action potentials from a
soma. It is also shown that the model can reproduce forma-
tions of typical potential gradients in dendrites of neurons.

1. Introduction

A neuron typically consists of dendrites (input cables), a
soma (cell body), and axons (output cables), where the den-
drite sometimes has complicated physical structure such as
the Purkinje cell. A wide variety of dendritic phenomena
have been observed [1]-[4], where it has been suggested
that such dendritic phenomena play certain roles in neural
information processing as well as spike-timing dependent
plasticity learning. One of the major modeling methods
of the “soma plus dendrite” is a multi-compartment soma-
dendrite modeling method, i.e., to discretize the dendrite
into a set of small compartments and to model the “soma
plus dendrite” by a coupled system of the compartments
as shown in Fig. 2(b) [5], where each compartment is de-
signed to reproduce nonlinear dynamics of a membrane po-
tential of the corresponding part of the neuron. On the other
hand, our group has been developing a neural system mod-
eling approach based on the nonlinear dynamics of an asyn-
chronous cellular automaton, where nonlinear dynamics
(especially, bifurcations) of neural systems are reproduced
by the asynchronous cellular automaton with low hardware
cost [6]-[9]. Our group is conceptually referring to such a
hardware platform as ”asynchronous bifurcation processor
(ABP).” In this paper, a multi-compartment neuron model
based on the concept of the ABP [9] is studied. It is shown
in this paper for the first time that the model can repro-
duce typical propagation phenomena of membrane poten-
tials between somas and dendrites of neurons such as for-
ward propagations of action potentials from dendrites and
resulting backward propagations of action potentials from a
soma. It is also shown that the model can reproduce forma-
tions of typical potential gradients in dendrites of neurons.

2. Multi-compartment neuron model based on ABP

Fig. 1(a) shows a basic structure of a multi-compartment
neuron model based on the ABP [9]. The model consists
of Q > 0 compartments {C0,C1, · · · , CQ−1}, where all the
compartments are assumed to be connected (i.e., there is
no isolated compartment). The 0-th compartment C0 is
used as a soma compartment and the other compartments
{C1, · · · , CQ−1}, are used as dendrite compartments. A den-
drite compartment Ci is said to be a terminal compartment
if it is connected to exactly one dendrite compartment, e.g.,
the compartments {C4,C5,C7,C8} in Fig. 1(a) are termi-
nal compartments. As shown in Fig. 1(b), each i-th com-
partment Ci can accept the following stimulation input (not
necessarily).

Ii(t) =
{

1 if t ∈ {t(1)
Ii , t

(2)
Ii , · · ·},

0 otherwise,

where t(n)
Ii is the n-th spike timing (or rising edges) of the

stimulation input Ii(t). As shown in Fig. 1(b), Each i-th
compartment Ci has a membrane register storing the fol-
lowing discrete membrane potential.

Vi ∈ {0, 1, · · · ,N − 1},
where the integer parameter N > 0 determines the resolu-
tion of the discrete membrane potential Vi. Also, each i-th
compartment Ci has a recovery register storing the follow-
ing discrete recovery variable.

Ui ∈ {0, 1, · · · ,M − 1},
where the integer parameter M > 0 determines the reso-
lution of the discrete membrane potential Ui. (v)The i-th
and the j-th compartments Ci and C j are connected via
discrete conductances Gi j ∈ {0, 1, · · · , L − 1} and G ji ∈
{0, 1, · · · , L − 1}, where the integer parameter L > 0 deter-
mines the resolution of the discrete conductances Gi j and
G ji.Each i-th compartment Ci has the following internal
clocks.

CVi(t) =
{

1 if t ∈ {t(1)
Vi , t

(2)
Vi , · · ·},

0 otherwise,

CUi(t) =
{

1 if t ∈ {t(1)
Ui , t

(2)
Ui , · · ·},

0 otherwise,
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Figure 1: (a) Structure of the multi-compartment neuron model based on the ABP. (b) Connection between the i-th
compartment Ci and the j-th compartment C j via the discrete conductances Gi j and G ji. (c) Typical time-waveforms
of the i-th compartment. (d) Connection between the i-th compartment Ci and the j-th compartment C j via the discrete
conductances Gi j and G ji.
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CGi(t) =
{

1 if t ∈ {t(1)
Gi , t

(2)
Gi , · · ·},

0 otherwise,

where t(n)
Vi , t(n)

Ui , and t(n)
Gi represent spike timings (or rising

edges) of the clocks. Let t+ denote limε→+0 t + ε (i.e., just
after t). The internal clocks CVi and CUi trigger the follow-
ing asynchronous transitions of the discrete states Vi and
Ui, respectively (see for example Vi at t = t(1)

Vi and Ui at
t = t(2)

Ui in Fig. 1(c)).

Vi(t+) = Vi(t) + DV (Vi,Ui) if CVi(t) = 1,

Ui(t+) = Ui(t) + DU (Vi,Ui) if CUi(t) = 1,
(1)

where DV (Vi,Ui) and DU (Vi,Ui) are discrete functions de-
fined by

DV (Vi,Ui) = 1 if (Vi,Ui) ∈ S++i ∪ S+−i ,
DV (Vi,Ui) = −1 if (Vi,Ui) ∈ S−+i ∪ S−−i ,
DV (Vi,Ui) = 0 if (Vi,Ui) ∈ S0

i ,
DU(Vi,Ui) = 1 if (Vi,Ui) ∈ S++i ∪ S−+i ,
DU(Vi,Ui) = −1 if (Vi,Ui) ∈ S+−i ∪ S−−i ,
DU(Vi,Ui) = 0 if (Vi,Ui) ∈ S0

i ,

S++i ≡ {(Vi,Ui)|Ui < fV (Vi),Ui ≤ fU (Vi)},
S−+i ≡ {(Vi,Ui)|Ui ≥ fV (Vi),Ui < fU (Vi)},
S+−i ≡ {(Vi,Ui)|Ui ≤ fV (Vi),Ui > fU (Vi)},
S−−i ≡ {(Vi,Ui)|Ui > fV (Vi),Ui ≥ fU (Vi)},
S0

i ≡ {(Vi,Ui)|(Vi,Ui) � S++i ∪ S+−i ∪ S−+i ∪ S−−i },
where fV and fU are discrete functions defined by

fV (Vi) = α(�k1(Vi)2 + k2Vi + k3	),
fU (Vi) = α(�k4Vi + k5	),
k1 =

f1 M
N2 , k2 = −2k1� f2N	,

k3 = k1(� f2N	)2 + � f3 M	, k4 =
f4 M
N , k5 = � f5M	,

where �·	 is the floor function, α(x) = x for −1 ≤ x ≤ M,
and α(x) = −1 for x < −1. The stimulation input Ii triggers
the following asynchronous transition of the membrane po-
tential Vi (see for example Vi at t = t(4)

Ii in Fig. 1(c)).

Vi(t+) = Vi(t) + 1 if Ii(t) = 1. (2)

In addition, the compartment exhibits the following firing
reset (see for example Vi at t = t(4)

Vi in Fig. 1(c)).

Vi(t+) = B if Vi(t) = M − 1 and CVi(t) = 1, (3)

where B ∈ {0, 1, · · · ,N − 1} is the value to which the mem-
brane potential Vi is reset. When the compartment exhibits
the above firing reset, the compartment is said to generate
an action potential of Vi as show in Fig. 1(c). In this paper
we fix the parameter values to (N,M, f1, f2, f3, f4, f5, B) =
(64, 64, 3.5, 0.45,−0.05, 1.5,−0.43, 10). Now, let us con-
sider the connection of the compartments shown in Fig.
1(b). The internal clock CGi triggers the following asyn-
chronous transition of the membrane potential Vi (see Fig.
1(d)).

Vi(t+) = Vi(t) +Gi j(Vi,V j)(V j(t) − Vi(t)) if CGi = 1,
(4)

where

Gi j(Vi,V j) =
{

1/8 if − 30 ≤ |Vi − V j| ≤ 30,
0 otherwise.

For example, at t = t(1)
Gi in Fig. 1(d), the membrane po-

tential Vi increases by Gi j(V j − Vi) since V j > Vi. Also, at
t = t(1)

G j , the membrane potential V j decreases by G ji(Vi−V j)
since Vi < V j. Fig. 3 shows reproductions of typical den-
dritic phenomena by the multi-compartment neuron model
based on the ABP. In Fig. 3(a), weak stimulation inputs
I4 and I5 are applied to the terminal compartments C4 and
C5, respectively. In this case, no action potential is evoked
but the membrane potentials Vi of the compartments form
a potential gradient. In Fig. 3(b), strong stimulation in-
puts I4 and I5 are applied to the terminal compartments C4

and C5, respectively. In addition, a weak background noise
spike-train ni is applied to each compartment. In this case,
the stimulation inputs I4 and I5 evoke action potentials of
V4 and V5 in the terminal compartments C4 and C5, respec-
tively. These action potentials evoke an action potential of
V3 in the dendrite compartment C3. Repeating such dy-
namics, the action potential propagates to the soma com-
partment C0. In Fig. 3(c), a weak stimulation input I0 is
applied to the soma compartment C0. In this case, no ac-
tion potential is evoked but the membrane potentials Vi of
the compartments form a potential gradient. In Fig. 3(d), a
strong stimulation input I0 is applied to the soma compart-
ment C0. In addition, a weak background noise spike-train
ni is applied to each compartment. In this case, the stimu-
lation input I0 evokes an action potential of V0 in the soma
compartment C0. This action potential evokes an action
potential of V1 in the dendrite compartment C1. Repeat-
ing such dynamics, the action potential propagates to the
terminal compartments C4 and C5. In Fig. 3(d), a strong
stimulation input I4 is applied to the terminal compartment
C4 and a weak background noise spike-train ni is applied
to each compartment. In this case, a forward propagation
induces generation of an action of the soma compartment
C0 and it induces a backward propagation. Note that such
a backward propagation induced by a forward propagation
plays important role in an STDP learning.

3. Conclusions

In this paper, the multi-compartment neuron model
based on the ABP was studied. It was shown that the model
can reproduce typical dendritic phenomena such as the for-
ward propagation of action potentials, the backward prop-
agation of action potentials, and the backward propagation
induced by the forward propagation. It is was shown that
the model can reproduce formations of the potential gra-
dients. Future problems include development of an ABP-
based multi-compartment neuron model with STDP learn-
ing capability and development if a large scale network of
the ABP-based multi-compartment neuron models. This
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Figure 2: Reproductions of typical dendritic phenomena by the multi-compartment neuron model based on the ABP
(simulations). (a) Potential gradient. (b) Forward propagation. (c) Potential gradient. (d) Backward propagation. (d)
Backward propagation induced by forward propagation.
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