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Abstract- A mesh-tearing sub-entire domain (MTSED) basis
function method for improved electromagnetic (EM) scattering
analysis of strong-coupled finite periodic structures is proposed in
this paper. By tearing the coarse mesh of classic SED basis
function into several smaller ones, the modeling precision for
strong-coupled arrays can be improved more than 13dB
maximally with less than four times computational time
increasing compared to classic SED method. The mesh-tearing
technique based on both simplified SED (MTSSED) basis function
and accurate SED (MTASED) basis function are also investigated
in detail. The detailed algorithm is presented and the numerical
results demonstrate that the proposed MTSED method is an
accurate method for electromagnetic scattering analysis of strong-
coupled periodic structures.

I. INTRODUCTION

Nowadays, finite periodic structures such as photonic band-
gap (PBG) crystals [1] and phased-array antennas [2],
frequency selective surfaces (FSS) [3] are applied widely in
electromagnetic engineering. And accurate and efficient
techniques for analysis of periodic structures are always based
on periodic boundary condition (PBC), which is either applied
in the frequency domain in the context of the method of
moments (MoM) [4], and the finite element method (FEM) [5],
or implemented by using an equivalent delay condition in the
time domain analyses, such as the finite difference time
domain (FDTD) [6].
Among these full-wave analysis techniques, the MoM is a

robust approach to deal with electromagnetic scattering of
periodic structures. However, the conventional MoM requires
O(N2) memory and O(N3) computational complexity, which are
unaffordable for large-scale strong-coupled problems with
desired accuracy. Several physical-based entire-domain basis
functions have been developed to reduce the number of
unknowns. For example, a macro basis function (MBF) was
employed to analyze finite printed antenna arrays [7]. The
synthetic basis function (SBF) is similar to MBF, which was
applied in analyzing large-scale non-periodic arrays [8]. Both
MBF and SBF are time consuming because they consider the
mutual coupling effects in an iterative way. The characteristic
basis function (CBF) is another kind of physical-based entire-
domain basis function [9]. The CBF method uses a new type of
high-level (secondary) basis function to calculate the mutual

coupling, so the CBF can be obtained directly. For each single
cell, N2 CBFs should be considered, where N represents the
number of cells. Some other techniques have also been
presented to analyze the planar circuits and antenna arrays [10].
Recently, to decrease the memory requirement, an accurate

sub-entire domain (ASED) basis function method [11] is
proposed by Cui et al. Different from MBF and CBF, the
mutual coupling effects are considered by using dummy cells.
And all the elements are divided into 9 kinds according to the
ASED. Consider one periodic structure with N elements and M
discrete edges on each unit cell and the large-scale problem
involves N0=NM unknowns. The ASED basis function
decomposed the original problem into two smaller-size
problems, one part contains 9M unknowns and the other part
contains only N unknowns. To further simplify the calculation
procedure, a simplified sub-entire domain (SSED) basis
function method is proposed [12] which can reduce the number
of unknowns. When computing the basis function, the mutual
coupling among the elements is neglected directly so that it is
shared by all the elements. We compared and discussed the
efficiency and accuracy of the ASED and SSED methods in
[13].
In this paper, a mesh-tearing sub-entire domain basis

function method (MTSED) is proposed to analyze the
scattering of strong-coupled finite periodic structures. And
with slight computational complexity increasing, the modeling
accuracy can be improved significantly.

II. THEORY

a.MTSEDbasis functionmethod
Consider a two-dimensional periodic structure with N

perfectly electric conducting (PEC) cells in free space is
illuminated by a plane wave, the magnetic field integral
equation (MFIE) can be written as:
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Where ( )incH r represents the incident wave, ( )n r is the unit
normal vector, ( , )G r r is the Green’s function in free space,



( )J r represents the electric current distribution of the whole
periodic structure, which can be written as:
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where ( )nf r represents the SED basis function on the nth cell
which can be computed by conventional MoM with dense
mesh (usually about λ/10), n denotes the corresponding
coefficient. After using the Galerkin’s procedure and the SED
basis function, (1) can be written in a matrix form:
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Where 1 2 3[ ]=( , , )TN     is the expansion coefficient
vector and the elements of [ ]V and [ ]Z can be written as:
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In the SED method, the current distribution (SED basis
function) on each cell that is very important to the final
solution is computed with approximate (ASED) or even no
(SSED) mutual coupling consideration. As a result, the error
caused by the approximation is inevitable. Furthermore, the
size of the coarse mesh for the whole array analysis is chosen
the same as the unit cell for the whole array analysis, which is
much larger than λ/10. For weakly-coupled arrays, SED
method in [11], [12] can approach acceptable accuracy.
However, for strong-coupled arrays, SED method even can not
make the matrix solver converge to the real solution.

Figure 1. Periodic structures applied with MTSED method when k is 4.

In order to improve the computational accuracy, a MTSED
method is proposed in this paper. According to the main idea
of MTSED method, the coarse mesh on each cell is to be torn
into k parts, as shown in Fig.1. With the increase of mesh
density, the accuracy is improved. Theoretically, when the
coarse mesh is refined to be about λ/10, the MTSED method
will appear to be the conventional MoM and the accuracy can
be ensured. Of course, the CPU time will be unaffordable in
the case of large-scale arrays.
In MTSED method, the overall electric current ( )J r in

equation (2) is modified as:
(6)

Here ( )T
n rf represent the basis functions on the torn parts of

each cell. Thus, (3) can be rewritten as:
[ ] [ ] [ ]T T T Z V (7)

Here, [ ]T with a size of kN denotes the tearing expansion
coefficient vector, the elements of [ ]TZ and [ ]TV are
corresponding to that of [ ]Z and [ ]V respectively, except that
the integration is over the torn parts of each cell. According to
MTSED method, the memory consumption is expanded k2
times for matrix storage. The CPU time for matrix filling is the
same as classic SED which is the most time consuming
procedure and the CPU time for matrix solving is increased
because of the expansion of matrix scale. As a result, the
increasing of CPU time is slight. The MTSED method is a
compromise consideration between MoM full wave analysis
and classic SED method.

Figure 2. Periodic structures with MTSED method when k is 4.

b.MTSSEDbasis functionmethod
The SSED method is a simplified solution while the electric

current distribution on each element is computed by
conventional MoM without considering the coupling from
neighboring cells. With the coarse mesh of SSED method torn
into k parts, the unknowns are increased from N to kN and the
CPU time and memory consumption are also increased for
accurate array analysis. Not only the current magnitude and
phase are amended as it works in classic SSED, but also the
current distribution on the whole array is modified. And the
precision can be improved consequently as we presented in
[14].

c.MTASEDbasis functionmethod
The mutual coupling of neighbouring elements is considered

approximately in ASED method for basis function calculation.
The whole elements are catalogued into 9 kinds of basis
functions as illustrated in Fig.2. The relatively accurate electric
current distributions on the interior cell (IC), the left edge cell
(LeEC), the right edge cell (REC), the upper edge cell (UEC),
the lower edge cell (LoEC), the left upper corner cell (LUCC),
the right upper corner cell (RUCC), the left lower corner cell
(LLCC), and the right lower corner cell (RLCC) are obtained
respectively with conventional MoM. Then the coarse mesh on
each cell is torn into k parts according to MTASED and they
are substituted as basis functions in equation (6). With the
coupling from neighbouring cells taken into account, the
accuracy is further improved.

III. NUMERICAL RESULTS AND DISCUSSIONS
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Metal cube array
Firstly, we give the bistatic radar cross section (RCS) of a

strong-coupled 6×6 metal cube array. And the element
dimension is 0.5λ×0.5λ×0.5λ and the gap between
neighbouring element is 0.5λ in normal incidence case. The
number of torn meshes (k) set to be 40. As a result, the coarse
mesh that is set to be 0.4λ×0.4λ×6 in classic SED method has
been refined to be about 0.13λ×0.13λ in MTSED method and
the memory consumption is expanded to 1600 times for matrix
storage. From Fig.3 (a) we can observe that the RCS curve
obtained by MTSSED method is more accurate than that of
SSED method compared to FEKO with 0.1λ mesh size. There
is about 5.39dB error at 0° and 11.99dB error at 90° with
SSED method which is mainly caused by the ignorance of
mutual coupling from neighbouring elements in the simplified
sub-entire domain basis function computation. With the
application of MTSSED method, the accuracy has been
improved significantly for the current distribution on each cell
is modified with relatively dense mesh. The error at 0° and 90°
has reduced to 1.91dB and 3.13dB, respectively. The average
error for all angles has decreased from 2.68dB to 0.89dB. Fig.3
(b) shows the RCSs calculated by ASED method, MTASED
method and FEKO with the same mesh. It is obvious that the
RCS calculated by MTASED method is more consistent with
FEKO full wave analysis. The error at 0° has reduced from
2.77dB to 0.02dB and the error at 90° has reduced from
4.65dB to 1.23dB. Consequently, the MTASED method is
more accurate than MTSSED method for the more accurate
basis function.
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Figure.3. RCSs of the 6×6 cube array in normal incidence case. (a) MTSSED
method. (b) MTASED method.

When the angle of incident wave is oblique, the increase of
multiple interactions between array elements will be enhanced.
Therefore, the accuracy of SED method will usually be
declined. Fig.4 shows the bistatic RCSs of a 6×6 cube array
consists of associated elements calculated by FEKO with the
same mesh, SED method and MTSED method in oblique
incidence case (θ=45°). The torn mesh on each single cell is
about 0.15λ×0.15λ (k=42). From Fig.4 (a) we can observe that
the error at 0° has decreased from 8.81dB to 1.54dB and the
error at 90° has reduced from 5.06dB to 3.99dB with MTSSED
method and there is significant improvement of accuracy at
74 with the error decreased from 11.45dB to 0.66 dB. When
MTASED method is employed, as shown in Fig.4 (b), the error
at 0° has decreased from 5.73dB to 2.34dB and the error at 90°
has reduced from 5.74dB to 2.34dB and there is significant
improvement of accuracy at 36 with the error decreased from
15.22dB to 1.86dB. Compared to SED method, the
computational accuracy has been improved obviously with
MTSED method in oblique incidence case. The accuracy is
expected to be further improved with denser torn meshes or
with basis function computed with more layers of dummy
elements.
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Figure.4. RCSs of the 6×6 cube array in normal incidence case (θ=45°). (a)
MTSSED method. (b) MTASED method.

To test the efficiency of the proposed method, we record the
computation time when computing the RCSs of different arrays
with SED method and MTSED method, as shown in Table I.
Our codes are implemented by a personal computer with
Intel(R) Core(TM) 2 Duo CPU T6400-2.00GHz and 2GB
RAM. We can conclude that there is about 2 times and 5 times
computation time increasing compared to classic SED method
with the application of MTSSED and MTASED method,
respectively. Although the efficiency of MTASED method is
lower than that of MTSSED method with the same torn meshes,
the MTASED method can usually achieve a better accuracy.
To improve the efficiency of our proposed method, parallel
programming such as message passing interface (MPI) [15],
shared address space (OpenMP) [16] and meta process model
(MpC) [17] can be incorporated.

TABLE I
COMPARISON OF COMPUTATION TIME OF 6×6 CUBE ARRAY

Theta Time[s]
SSED MTSSED ASED MTASED

0° 224.57 343.85 205.75 1071.64
45° 223.56 589.35 211.68 972.51

IV. CONCLUSION

In this paper, the MTSED method is proposed by tearing the
coarse mesh of SED basis function on each unit cell into
several parts. The numerical results show that the modelling
precision for strong-coupled arrays can be improved more than
13 dB maximally with less than four times computational time
increasing compared to classic SED method which
demonstrate that the proposed MTSED method is an accurate
method for electromagnetic scattering analysis of strong-
coupled finite periodic structures.
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