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Abstract—The predictive coding theory assumes that
the sensory system of the cortex continuously predicts in-
coming stimuli and detects residual errors. The mismatch
negativity (MMN) is a neural response to a deviance of
learned regularity, and is regarded as an error signal in this
theory. Here we report a preliminary study on a computa-
tional model of the auditory MMN using the Echo State
Network which is one of the recurrence neural network
models. We trained the network by an oddball task with
two pitch patterns. The result shows that our model simu-
lates a qualitatively similar waveforms with the MMN re-
sponse to deviant pitches.

1. Introduction

The auditory mismatch negativity (MMN) (for review,
see [1]) is a neural response to a deviance of learned regu-
larity. It is one of the event related potentials which arises
between 100 and 200 ms after the deviant stimulus on-
set, and can be measured by electroencephalography (EEG)
or magnetoencephalogram (MEG). When a deviant magni-
tude is higher, the MMN amplitude is larger and the latency
is smaller. When a deviant probability is lower, the MMN
amplitude is larger and there is no effect for the latency.

The MMN has been widely used in clinical and theoreti-
cal studies, for example, as a biomarker of psychosis [2, 3],
and as a research of brain plasticity in terms of compar-
ing the difference between musicians’ and non-musicians’
MMN [4, 5]. However, neurophysiological mechanisms of
the MMN are still controversial.

The MMN is often regarded as an error signal of the
predictive coding model [6] in recent studies [7]. Sev-
eral mathematical models of the MMN are proposed based
on the predictive coding idea (e.g. [8, 9]). Wacongne et
al. (2012) proposed a neuronal model of the auditory cor-
tex accounting for the MMN, whose scheme is as follows.
There are four components in the model: Thalamic inputs,
Prediction error layer, Predictive layer, and Memory trace.
An input sound stream is composed of two pitches A and B.

Population of neurons in the Predictive layer continuously
predicts incoming Thalamic inputs. Population of neurons
in the Prediction error layer receives two inputs: inhibitory
inputs coming from the Prediction layer and excitatory in-
puts, or the Thalamic inputs, and then the residual is the
error signal, namely MMN. The error signal is transmitted
to the Prediction layer to adjust the internal model of the
prediction. Memory neurons keep the inputs of past few
hundred milliseconds.

Wacongne et al. used the spiking neuron model [10], and
implemented precise neuronal behavior in terms of realis-
tic receptors (AMPA, NMDA, and GABA), synapses, and
spiking neurons. However, it is difficult to apply this model
for processing more complex sound patterns, because it fo-
cuses on the precise neuronal behavior of the primary audi-
tory cortex, and it does not consider more complex auditory
patterns.

The Echo State Network (ESN) [11, 12, 13] is one
of artificial recurrent neural networks, where neurons are
sparsely and randomly connected, and only outputs are
trained. The scheme of ESN is as follows. xi(n) is the ith
neuron (i = 1, . . . ,N) at time n in the dynamical reservoir.
d j(n) and y j(n) are the jth teacher data and system output
( j = 1, . . . , L) at time n, respectively. Wrec, Wback, and
Wout are weight matrices of recurrent connections inside
the dynamical reservoir, feedback connections from out-
puts to reservoir, and output connections from the reservoir
to system outputs, respectively.

The activation of internal units is updated according to

x(n + 1) = f(Wrecx(n) +Wbacky(n)), (1)

y(n + 1) = fout(Wout(x(n + 1), y(n)), (2)

where f and fout denotes the individual units’ transfer func-
tions. The internal weights Wrec and feedback weights
Wback are set to random and sparse at first, and not changed
during the training. Only the output weights Wout are
trained. The echo state network can learn nonlinear sys-
tems, although the structure is simple.
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In the present study, we propose the predictive coding
model with ESN for processing complex and realistic au-
ditory patterns, and provide a learning procedure for the
proposed network model.

2. Model

We propose a computational model for pitch pattern per-
ception based on Jaeger’s echo state network model [11]
and the predictive coding architecture of Wacongne et al.’s
neuronal model [9]. Structure of the proposed model is
shown in Fig. 1
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Figure 1: Structure of proposed model

2.1. Overall structure of the network

x(n) is a status of memory trace layer at time n (Nx di-
mensions), y(n) is a status of predictive layer (Ny dimen-
sions), r(n) is a status of prediction error layer (Ny dimen-
sions), and d(n) is a status of given sensory inputs (Ny di-
mensions).

The state of each layer is updated according to

x(n + 1) = x(n) +
δ

τ

(
−α0x(n) + fx

(
Wrecx(n − kx)

+Wback(y(n − ky) + r(n − kr))
))
,

(3)

y(n) = fy(Woutx(n)), (4)

r(n) = fr(d(n) − y(n)), (5)

where Wrec is Nx × Nx weight matrices of recurrent con-
nections, Wback is Nx × Ny weight matrices of feedback
connections, and kx, ky, kr are delay times. We define
fx(x) = tanh x, fy(x) = tanh x, and fr(x) = max(x, 0). Ini-
tial state of x(n) is randomized as a uniform distribution
over −0.2 ∼ 0.2.

2.2. Configuration of Network

Step1 : Setting Wrec and Wback

We define the network of proposed model based on [11].

1. Generate an internal weight matrix W0. Assign 1 or
−1 to randomly selected βrNx×Nx components of W0.
Assign 0 to the other units.

2. Normalize W0 to a matrix W1 with unit spectral radius
by putting W1 = 1/|λmax| W0, where λmax is maxi-
mum eigenvalue of W0.

3. Scale W1 to Wrec = αrW1.

4. For Wback, first, randomly assign −1 ∼ 1 to βbNx × Ny

components of W3 with a uniform distribution. As-
sign 0 to the other units. Then, normalize the sum of
columns of the unit vectors, multiply with coefficient
αb, and set it to Wback.

Step2 : Training Wout

In our proposed method, the weight values for the output
connection Wout are computed by a few iterative epochs.

1. As initial values of Wout,(m), all the components of
Wout,(0) are set to 0.

2. Using Wout,(m−1) which is calculated in the m − 1th
epoch, the mth weight matrix Wout,(m) is calculated.
Using the sensory input d(n) with the time ranges n =
0, ..., T1, the model is driven with ”teacher-focing”,
which means that the feedback of output state y(n) is
replaced with the teacher signal (the given sensory in-
put) d(n) as following equations.

x(n + 1) = x(n) +
δ

τ

(
−α0x(n) + fx

(
Wrecx(n − kx)

+Wback(d(n − ky) + r(n − kr)) + σξ(n)
))
,

(6)

y(n) = fy(Wout,(m−1)x(n)), (7)

r(n) = fr(d(n) − y(n)), (8)

where ξ(n) has random values of normal distribution
with mean 0 and variance 1. σ specifies the amplitude
of random values. x(n) and y(n) at time from T0 to
T1 are used to calculate Wout,(m). Next, input the time
series of x(n) into state collecting matrix M, where M
is (T1 − T0 − 1) × Nx matrix. Then, input sigmoid-
inverted d(n), or tanh−1 d(n) into G, where G is (T1 −
T0 − 1) × Ny matrix. Wout,(m) is calculated using ridge
regression as

(Wout,(m))T = (MT M + λE)−1MT G, (9)

where λ is a coefficient for adjusting a sparseness, and
E is a unit matrix.
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3. After the I iterations of above calculation, we get
Wout,(I) as Wout by repeating the learning for several
times (I =10 iterations are enough ).

3. Results

We use an input data simulating the oddball paradigm
which is often used for the stimulus of MMN experiments.
The red curves in Fig.2 (b) shows the input data. The lower
and upper curve indicate pitch A and B, respectively. Rep-
etition of two pitches A and B make a stream of patterns:
the data includes 80% of standard patterns ”AAAB” and
20% of deviant pitches (e.g.,”AAAAB”).

We demonstrate our model with the input data simulat-
ing the oddball paradigm using following parameter values.
Nx = 200, Ny = 2, αr = 0.6, βr = 0.1, αb = 0.8, βb =

0.1, α0 = 0.7, τ = 2.5, δ = 1, kr = 5, kx = 10, ky =

0, σ = 10−5, and λ = 0.1.
Figure 2 shows the typical response of the proposed

model. The red and blue curves of (b) are the teacher data
(d(n) on the Sensory input of Fig.1) and resulting data (y(n)
on the Predictive layer) respectively. Many red curves of
(a) are time series of all neurons on the dynamical reser-
voir (x(n) on the Memory trace layer). Green curves of (c)
are time series of residual between the teacher and resulting
data (r(n) on the Prediction error layer).

The response on the dynamical reservoir (many red
curves of Fig.2 (a)) vary among units, and a set of the whole
units represent the resulting data (blue curves in Fig.2 (b)).
The time series r(n) = fr(d − y) (green curves in Fig.2 (c))
is the residual between the the Sensory input (red curves
of Fig.2 (b)) and the prediction, or the resulting data (blue
curves in Fig.2 (b)). They are correspond to the error signal
of predictive coding, or the MMN.

We can observe that responses on the predictive layer
(the blue curves of Fig.2 (b)) are reproducing the sensory
input (red curve). Especially, they are almost similar at the
timing of peaks, that is, A or B sound is played. On the con-
trary, when the sounds are omitted or deviant, the response
on the prediction layer shows wrong predictions. Note that
the deviant sound (AAABAAABAAAAB) is played at the
timing of a black arrow. There is a small predicted wave
arising at the upper blue curve.

Thus, our model simulates qualitatively reproduce wave-
form of the MMN response to deviant pitches. This results
indicate that our proposal model can learn the input pattern,
and possibly predict an underlying nonlinear regularity be-
hind the data.

4. Conclusion

We have reported our preliminary study on a computa-
tional model of the auditory MMN using the Echo State
Network. We trained the network by an oddball task with
two pitch patterns. We have showed that our model simu-
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Figure 2: Typical response of the proposed model. The red
and blue curves of (b) are the teacher and resulting data
respectively. Many red curves of (a) are time series of all
x(n) in the memory trace layer. Green curves of (c) are time
series of r(n).

lations can qualitatively reproduce waveforms of the MMN
response to deviant pitches.

This report is the first step towards a computational
model of the MMN. It is an important future problem to
analyze this model by changing parameters, and discuss
the relation between the computational and implementation
levels of analysis in terms of Marr’s levels of analysis.
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