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Abstract—Towards understanding of neural signaling
of Caenorhabditis elegans, cluster analysis is carried out
for the central whole brain imaging data on the basis of
spectral clustering. Correlation between the data is rep-
resented as weighted edges in a similarity graph. Opti-
mized clustering resolves into an eigenvalue problem of
the graph Laplacian defined by the similarity graph. We
analyze the neural activities of the wild-type and theunc-7
mutant which has defect in gap junction. In the wild-type,
the neural activities within the same cluster are highly co-
herent. There are anti-phase clusters in which the neural
activities are obviously in anti-phase. In theunc-7 mu-
tant, highly coherent neural activities are disappeared. Gap
junction is required to generate a highly organized neural
synchronization. In functional maps of the neurons, the
functional left-right symmetry of neuronal position within
the same cluster is partially shown.

1. Introduction

The nematodeCaenorhabditis elegans is subject to the
brain activity map project together withDrosophila, ze-
brafish and mouse [1].C. elegans is a useful model or-
ganism in neurobiology because the neural connectivity is
fully known [2]. The nervous system ofC. elegans consists
of 302 neurons connected by about 6500 chemical synapses
and about 900 gap junctions. About 170 neurons of them
densely locate in the head region. Although the wiring dia-
gram of the nervous system is determined, functional map
is poorly known. Recently, we developed a 4D imaging
system to measure the neural activity in the head region as
a worm lives [3]. Therefore, cluster analysis is carried out
for the central whole brain imaging data.

The k-means algorithm and the hierarchical clustering
are popular clustering methods. Since thek-means algo-
rithm has a tendency to divide objects into equally sized
clusters, an obviously inappropriate partition is frequently
occurred. In the hierarchical clustering, objects tend to be
added to the tail of the largest cluster. This is known as
“chaining phenomenon” and often generates spurious clus-

ters. In this work, spectral clustering [4] is applied to deter-
mine appropriate clusters of the neural imaging data. Cor-
relation between the data is represented as weighted edges
in a similarity graph. The graph Laplacian is subsequently
defined by the similarity graph. Spectral clustering finds
group structure in a given data set on the basis of the eigen-
vectors of the graph Laplacian.

2. Method

2.1. Graph Laplacian

For a given graph withN vertices, itsN×N graph Lapla-
cianL is defined by

L = D −W, (1)

where D and W are theN × N degree matrix and the
N × N adjacency matrix, respectively. The elementwi j

of W corresponds to an edge for a directed graph or an
arc for an undirected graph whose value represents the
weight from i-th vertex to j-th vertex. The element ofD
is dii =

∑N
j=1, j,i wi j or di j = 0 for i , j.

There are several important properties in the graph
Laplacian. Letλk and~ξk be the eigenvalue and the eigen-
vector ofL, respectively.

L~ξk = λk~ξk. (2)

When wi j is non-negative and symmetric, that iswi j =

w ji ≥ 0, the eigenvalues are real and non-negative.
The smallest eigenvalue is 0 and its eigenvector is~1 =
(1, 1, · · · , 1). When the eigenvalues are arranged in an as-
cending order, therefore, 0= λ1 ≤ λ2 ≤ · · · ≤ λN . The mul-
tiplicity M of λk = 0 (k = 1, · · · ,M) is equal to the num-
ber of connected componentsG1, · · · ,GM in the graph. The
eigenspace ofλk = 0 is spanned by the vectors~1G1, · · · ,

~1GM

of those components. Spectral clustering is indebted to
these properties.
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Figure 1: The neural activity measured in the different neu-
rons of the wild-type. The Pearson’s correlation coeffi-
cient ri j between the data (a) and (b,c,d) arerab = 0.757,
rac = −0.860 andrad = 0.129, respectively. The correlation
between the data (b) and (c) is large negative,rbc = −0.662.

2.2. Spectral clustering

First of all, a similarity graph in which each vertex rep-
resents each data is considered. A certain degree of “sim-
ilarity” between the data, whose valuewi j is non-negative
and symmetric, is attached as an edge so that the similarity
graph is undirected. In this work, the similarity graph is di-
vided intoK clustersG1, · · · ,GK whose partition satisfies
Gk ∩ Gk′ = 0 for k , k′ and minimizes the following cost
function [5].

NCut(G1, · · · ,GK) =
K
∑

k=1

cut(Gk, Ḡk)
vol(Gk)

. (3)

Where cut(A, B) =
∑

i∈A, j∈B wi j/2, Ā is the complement of
A and vol(Gk) =

∑

i∈Gk
dii. The number of clustersK is a

given number. The cost function in eq. (3) indicates the
sum of the edgeswi j betweenGk andḠk normalized by the
factor vol(Gk).

Since this optimization problem is NP-hard [6], it is dif-
ficult to determine optimal clustering for a large graph. In
the case of nervous system ofC. elegans, for examples,
the number of vertices isN ≈ 170 for the head region or
N = 302 for the entire nervous system. According to the
Rayleigh-Ritz theorem, the cost function in eq. (3) is ap-
proximately replaced with the sum of the eigenvaluesλ′k of
the normalized graph LaplacianLsym = D−1/2LD−1/2 for
optimization.

min
G1,···,GK

NCut(G1, · · · ,GK)→ min
λ′1,···,λ

′
K

K
∑

k=1

λ′k. (4)

Practically, the optimization problem resolves into an
eigenvalue problem ofLsym. Spectral clustering algorithm
is as follows [4].

step 1. First of all,W of the similarity graph is given. Sub-
sequently,D, L andLsym are defined fromW.

step 2. The eigenvaluesλ′k and the eigenvectors~ξ′k of Lsym

are calculated:Lsym~ξ
′
k = λ

′
k
~ξ′k.

step 3. Using~ξ′k corresponding to the smallestK eigenval-
ues,N × K matrix U = (ui,k) is introduced. Where

ui,k = ξ
′
i,k/
√

∑K
j=1(ξ′i, j)

2. Let~vi be theK dimensional

vector corresponding toi-th row of U. The points
(vi)i=1,···,N are divided intoK clustersC1, · · · ,CK by
thek-means algorithm.

In this work,W is given by the Pearson’s correlation coeffi-
cientri j betweeni-th and j-th neuron data. Sincewi j must
be non-negative in a similarity graph, the absolute value
of ri j is introduced to define the graph Laplacian, that is
wi j = |ri j|. A negative correlation works in the same way
as a positive correlation in the spectral clustering. For ex-
amples, the data in Fig.1a, Fig.1b and Fig.1c probably be-
long to the same cluster although the correlation coefficient
rbc = −0.662 is large negative. The sign ofri j is not taken
into account.

All programs in this work are written in the C language
and are compiled by the GNU C compiler on UNIX.

2.3. Experimental data

For the neurons in the head region ofC. elegans, somatic
Ca2+ concentrations are simultaneously visualized by the
4D live-cell imaging system [3]. Voltage-gated Na+ chan-
nels have not been found inC. elegans [7]. Instead of
Na+-based classical action potentials, the neurons might
have Ca2+-based signal amplification as in the large nema-
todeAscaris. Therefore, the Ca2+ signaling well reflects
the dynamics of the neural activity. Using the Ca2+-binding
fluorescent protein YC2.6, Ca2+ imaging data is measured
for the wild-type (the standard “normal” type) and theunc-
7 mutant. Theunc-7 mutant has defect in gap junction
and exhibits uncoordinated locomotion. The neural con-
nectivity of theunc-7 mutant is different from that of the
wild-type. No stimulation is add to a worm during mea-
surement. Time interval is 1/4.5 sec. In this work, we
adopt the time course data sets of 2000 time points,xi(n)
(n = 1, 2, · · · , 2000). Herei and n are neuron and time
indices, respectively. The number of observed neurons is
aboutN ≈ 150. To eliminate the YC2.6 expression dif-
ference in each neuron, we analyze the normalized values
(xi(n)− xmin,i)/(xmax,i − xmin,i). xmax,i andxmin,i are the max-
imum and the minimum values ofxi(n), respectively. Ex-
amples of the neural activity are shown in Fig.1.
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Figure 2: Spectra of the normalized graph LaplacianLsym

for the wild-type (a) and theunc-7 mutant (b). The small-
est 20 eigenvalues are plotted in an ascending order for 6
worms.

3. Results

3.1. Spectrum of graph Laplacian

Spectra of the normalized graph LaplacianLsym are
shown in Fig.2. We confirm that the smallest eigenvalue
of the graph Laplacian isλ1 = 0. Eq. (4) indicates that
the (K + 1)-th eigenvalueλK+1 gives the sum of newly cut
weightswi j, that is an additional “cost”, when the number
of partitions is increased fromK to (K+1). At a large spec-
tral gap, therefore, no loosely connected cluster remains.
The graph is already divided into strongly connected clus-
ters. Since a large spectral gap is not shown in Fig.2, an ap-
propriateK is not determined to indicate a distinct division
of the graph. The graph is connected via the edgewi j which
takes a continuous value between 0 and 1. Therefore, the
spectra of the graph Laplacian become continuous.

WhenW is binarized using the thresholdε such aswi j =

1 for strong correlation|ri j| ≥ ε or wi j = 0 for weak corre-
lation |ri j| < ε, the spectrum of the graph Laplacian has a
large gap. Whenε = 0.4, for an example, the graph Lapla-
cian has a spectral gap atk = 4 ∼ 7 (results not shown in
this paper).

3.2. Functional map of neurons

In the case ofK = 4, the spectral clustering of the central
whole brain imaging data are shown in Fig.3. In the wild-
type (Fig.3a), the neural activities within the same cluster
are highly coherent. The clustersC2 andC3 are in anti-
phase. The clustersC2 andC4 are almost in phase. There
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Figure 3: Spectral clustering of the neural activity for the
wild-type (a) and theunc-7 mutant (b). The neural activity
is displayed by heatmap. The smallestK eigenvalues of
Lsym in Fig.2 are used for clustering.K = 4.

are many connections amongC1, C2 andC3. On the other
hand,C4 has a few connections between the other clusters.
As the number of partitionsK increases, the clusters are
divided into small clusters in which the neural activities are
coherent. Correlation between the clusters are consistent
with that of the synaptic connectivity inC. elegans (results
not shown in this paper).

In theunc-7 mutant (Fig.3b), highly coherent neural ac-
tivities are disappeared. The clustersC2 andC4 are in anti-
phase. The clusterC3 has a few connections between the
other clusters. In addition to theunc-7 mutant, we analyze
the unc-13 mutant which has defect in chemical synapse.
In theunc-13 mutant, highly coherent neural activities are
also disappeared (results not shown in this paper). We find
that both gap junction and chemical synapse are required
to generate a highly organized neural synchronization.

Functional maps of the neurons are shown in Fig.4. The
neurons in the same cluster are filled with the same color
and are located at the measurement point in a worm. The
neural activity is measured in soma. Each neuron extends
long axons from its soma and is connected to other neurons
at end point of the axon. Therefore, a physical distance be-
tween the somas is not related to a “similarity distance”
between the neural activities in the somas. In Fig.4, the
neurons in the same cluster are not localized spatially. In
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Figure 4: Functional map of the neurons for the wild-type
(a) and theunc-7 mutant (b). The neurons in the head re-
gion are plotted according to the clustering in Fig.3. The
x, y andz axes correspond to the the head/tail, the dorsal
/ventral, and left/right directions, respectively.

C. elegans, many neurons, AVAL and AVAR for examples,
are in pairs and locate on the left and right sides of a worm.
Within the same cluster, this left-right symmetry of neu-
ronal position is partially shown in Fig.4.

4. Discussion

Spectral clustering using the normalized graph Lapla-
cian is applied to divide the neural activities inC. elegans.
Instead of eq. (3), the following cost function is consid-
ered [8].

RatioCut(G1, · · · ,GK) =
K
∑

k=1

cut(Gk, Ḡk)
|Gk |

, (5)

where|A| is the number of vertices inA. The spectral clus-
tering with eq. (5) is achieved by solving the eigenvalue
problem of the graph LaplacianL in eq. (2). In this case,
spectral clustering divides the neurons into a large cluster
and other tiny clusters for the wild-type and theunc-7 mu-
tant. As the number of partitionsK is increased, an addi-
tionally divided cluster is tiny.

To provide a large spectral gap of the graph Laplacian,
W of the similarity graph must be sparse.W represents a
neighborhood graph in which the “thin” edges are removed.
Although the correlation coefficient is used to determine
W in tis work, binarized graph LaplacianL is able to be
determined directly from the neural data [9].

Since individual difference in the neuron distribution is
quite large, neuron annotation, that is a one-to-one corre-
spondence between the imaging data and neuron name, is
poorly succeed. When the annotation is completed, the pre-
sented cluster analysis is helpful to understand neural sig-
naling ofC. elegans.
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