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Abstract—Towards understanding of neural signalingers. In this work, spectral clustering [4] is applied toatet
of Caenorhabditis elegans, cluster analysis is carried out mine appropriate clusters of the neural imaging data. Cor-
for the central whole brain imaging data on the basis aklation between the data is represented as weighted edges
spectral clustering. Correlation between the data is rept a similarity graph. The graph Laplacian is subsequently
resented as weighted edges in a similarity graph. Optilefined by the similarity graph. Spectral clustering finds
mized clustering resolves into an eigenvalue problem afroup structure in a given data set on the basis of the eigen-
the graph Laplacian defined by the similarity graph. Weectors of the graph Laplacian.
analyze the neural activities of the wild-type and time-7
mutant which has defect in gap junction. In the wild-type,
the neural activities within the same cluster are highly ca2. Method
herent. There are anti-phase clusters in which the neural
activities are obviously in anti-phase. In tac-7 mu- 2.1. Graph Laplacian
tant, highly coherent neural activities are disappearegh G
junction is required to generate a highly organized neural For a given graph witiN vertices, itsN x N graph Lapla-
synchronization. In functional maps of the neurons, theianL is defined by
functional left-right symmetry of neuronal position withi
the same cluster is partially shown. L=D-W (1)

where D and W are theN x N degree matrix and the

N x N adjacency matrix, respectively. The element

of W corresponds to an edge for a directed graph or an
arc for an undirected graph whose value represents the
weight fromi-th vertex toj-th vertex. The element dd

1. Introduction

The nematodé€aenorhabditis elegans is subject to the
brain activity map project together witbrosophila, ze-
brafish and mouse [1]C. elegans is a useful model or- . o
ganism in neurobiology because the neural connectivity I3 di = 2?:1,1'9“ Wi j Ordii_z Ofori # j. o
fully known [2]. The nervous system & elegansconsists ~ 1here are several important properties in the graph
of 302 neurons connected by about 6500 chemical synapdé¥lacian. Letlk andéy be the eigenvalue and the eigen-
and about 900 gap junctions. About 170 neurons of thefCctor ofL, respectively.
densely locate in the head region. Although the wiring dia- . .
gram of the nervous system is determined, functional map L&k = gk (2)
is poorly known. Recently, we developed a 4D imaging
system to measure the neural activity in the head region ¥¢hen w;; is non-negative and symmetric, thatvg; =
a worm lives [3]. Therefore, cluster analysis is carried owvji > 0, the eigenvalues are real and non-negative.
for the central whole brain imaging data. The smallest eigenvalue is 0 and its eigenvectof is

The k-means algorithm and the hierarchical clusteringl,1,---,1). When the eigenvalues are arranged in an as-
are popular clustering methods. Since Kameans algo- cending order, therefore,®1; < A, < --- < Ay. The mul-
rithm has a tendency to divide objects into equally sizetplicity M of 4x = 0 (k = 1,---, M) is equal to the num-
clusters, an obviously inappropriate partition is frecyen ber of connected componefids, - - -, Gy in the graph. The
occurred. In the hierarchical clustering, objects tenddo beigenspace ofx = 0 is spanned by the vectofgl, e TGM
added to the tail of the largest cluster. This is known asf those components. Spectral clustering is indebted to
“chaining phenomenon” and often generates spurious cludiese properties.
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Practically, the optimization problem resolves into an
eigenvalue problem disyy,. Spectral clustering algorithm
is as follows [4].
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Figure 1: The neural activity measured in th&etient neu- In this work,Wis given by the Pearson’s correlation €oe

rons of the wild-type. The Pearson’s correlation fiee Cientrij betweeni-th andj-th neuron data. Sinos;; must
cientr;; between the data (a) and (b,c,d) age = 0.757, be non-negative in a similarity graph, the absolute value
rac = —0.860 andr,q = 0.129, respectively. The correlation Of rij is introduced to define the graph Laplacian, that is

between the data (b) and (c) is large negatiye= —0.662. Wij = Irijl. A negative correlation works in the same way
as a positive correlation in the spectral clustering. Fer ex

amples, the data in Fig.1a, Fig.1b and Fig.1c probably be-
long to the same cluster although the correlatiorfiocient
roc = —0.662 is large negative. The sign Bf is not taken

First of all, a similarity graph in which each vertex rep-into account.
resents each data is considered. A certain degree of “sim-All programs in this work are written in the C language
ilarity” between the data, whose valug; is non-negative and are compiled by the GNU C compiler on UNIX.
and symmetric, is attached as an edge so that the similarity
graph is undirected. In this work, the similarity graphis di, 5 Experimental data
vided intoK clustersGy, - - -, Gk whose patrtition satisfies
Gk NGy = 0 fork # kK and minimizes the following cost
function [5].

2.2. Spectral clustering

For the neurons in the head region®felegans, somatic
Ca* concentrations are simultaneously visualized by the
4D live-cell imaging system [3]. Voltage-gated Nehan-
nels have not been found i@. elegans [7]. Instead of
Na'-based classical action potentials, the neurons might
_ have C&"-based signal amplification as in the large nema-
Where cut@, B) = Yica jes Wij/2, Ais the complement of tode Ascaris. Therefore, the G4 signaling well reflects
A and volGy) = Xicg, di- The number of clusterk is a  the dynamics of the neural activity. Using the?!Gainding
given number. The cost function in eq. (3) indicates th@uorescent protein YC2.6, Gaimaging data is measured
sum of the edges;; betweerGy andGy normalized by the  for the wild-type (the standard “normal” type) and timee-
factor volGy). 7 mutant. Theunc-7 mutant has defect in gap junction

Since this optimization problem is NP-hard [6], it is dif-and exhibits uncoordinated locomotion. The neural con-
ficult to determine optimal clustering for a large graph. Imectivity of theunc-7 mutant is diferent from that of the
the case of nervous system Gf elegans, for examples, wild-type. No stimulation is add to a worm during mea-
the number of vertices il ~ 170 for the head region or surement. Time interval is/4.5 sec. In this work, we
N = 302 for the entire nervous system. According to thedopt the time course data sets of 2000 time po(s)
Rayleigh-Ritz theorem, the cost function in eq. (3) is ap(n = 1,2,---,2000). Herei andn are neuron and time
proximately replaced with the sum of the eigenvalifesf  indices, respectively. The number of observed neurons is
the normalized graph Laplacidny, = D™Y2LD™"2 for  apoutN ~ 150. To eliminate the YC2.6 expression dif-
optimization. ference in each neuron, we analyze the normalized values
(%i(N) = Xmin,i)/ (Xmaxi = Xmin,i)- Xmaxi @NdXmin; are the max-
imum and the minimum values of(n), respectively. Ex-
amples of the neural activity are shown in Fig.1.

K

Z CUt(Gk, Gk) . 3)

NCutGy, - -
— vol(Gy)

-,Gk) = m|n Z/l{(. 4)

min NCutGg, - -
Gl,"',GK 1,' K k l
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Figure 2: Spectra of the normalized graph Lapladigm, 0
for the wild-type (a) and thenc-7 mutant (b). The small-
est 20 eigenvalues are plotted in an ascending order for 6 time (sec)
worms.

Figure 3: Spectral clustering of the neural activity for the
wild-type (a) and theinc-7 mutant (b). The neural activity
3. Results is displayed by heatmap. The smallésteigenvalues of
Lsym in Fig.2 are used for clusteringl = 4.
3.1. Spectrum of graph Laplacian

Spectra of the normalized graph Laplaciagm are
shown in Fig.2. We confirm that the smallest eigenvalu

Sre many connections amofig, C» andCs. On the other
of the graph Laplacian i2; = 0. Eqg. (4) indicates that y o, C2 3

i ) hand,C4 has a few connections between the other clusters.
the_ K + I)-th e|g_envaluel.<_+_1 g'V(iS th(,e, sum of newly cut As the number of partition& increases, the clusters are
welght_s_vvij, t.hé.lt is an additional "cost”, when the numberdivided into small clusters in which the neural activities a

of partitions is increased froii to (K +1). Ata large spec- coherent. Correlation between the clusters are consistent

tral gap, therefore, no loosely connected cluster remair’@ith that of the synaptic connectivity i@. elegans (results
The graph is already divided into strongly connected clu§1—Ot shown in this paper)

ters. Since a large spectral gap is not shown in Fig.2, an ap- . .
propriateK is not determined to indicate a distinct division In theunc-_? mutant (Fig.3b), highly coherent qeural_ ac-
of the graph. The graph is connected via the adgevhich tivities are disappeared. The clustaﬁanqc4 are in anti-
takes a continuous value between 0 and 1. Therefore, tRB2Se- The clustets has a few connections between the
spectra of the graph Laplacian become continuous. other clusters. In addl_tlon to thenc-7 mutant, we analyze
WhenW i binarized using the threshodcsuch asw; = the unc-13 mutant whlc_h has defect in chemlca! synapse.
1 for strong correlatior;;| > & or w;j = O for weak corre- In the _unc-13 mutant, highly coherent_ neu_ral activities are
lation rj;| < &, the spectrum of the graph Laplacian has %:SO d|sappeared (r.esults not sho_vvn in this paper). We fmd
large gap. Whee = 0.4, for an example, the graph Lapla-t at both gap jgnctlon and_ chemical synapse are _reqwred
cian has a spectral gaplat= 4 ~ 7 (results not shown in to generate a highly organized neural synchronization.
this paper). Functional maps of the neurons are shown in Fig.4. The
neurons in the same cluster are filled with the same color
and are located at the measurement point in a worm. The
neural activity is measured in soma. Each neuron extends
Inthe case oK = 4, the spectral clustering of the centrallong axons from its soma and is connected to other neurons
whole brain imaging data are shown in Fig.3. In the wild-at end point of the axon. Therefore, a physical distance be-
type (Fig.3a), the neural activities within the same clusteween the somas is not related to a “similarity distance”
are highly coherent. The cluste® andCs; are in anti- between the neural activities in the somas. In Fig.4, the
phase. The clustefs, andC, are almost in phase. There neurons in the same cluster are not localized spatially. In

3.2. Functional map of neurons
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Since individual diference in the neuron distribution is
quite large, neuron annotation, that is a one-to-one corre-
spondence between the imaging data and neuron name, is
poorly succeed. When the annotation is completed, the pre-
sented cluster analysis is helpful to understand neural sig
naling ofC. elegans.
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