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Abstract—This paper develops a new discretizing
method for 2-dimensional distributed parameter mechan-
ical systems, called “discrete mechanics”, and considers its
applications to control theory. Especially, a new control
method based on discrete mechanics and nonlinear opti-
mization is proposed. The new method is applied to the
vibration suppression problem of a film as a physical ex-
ample. From numerical simulation results, it turns out that
vibration of the film is suppressed by control inputs and the
whole of the film is stabilized.

1. Introduction

Control of distributed parameter systems is well-known
to be one of the most challenging problems in control the-
ory. In general, control of distributed parameter systems is
more difficult than that of concentrated constant systems,
because distributed parameter systems are represented by
infinite-dimensional equations and a lot of actuators and
sensors are needed for control. There are generally two
kinds of ways to control distributed parameter systems; an-
alytic methods and numerical methods. Especially, numer-
ical methods are powerful tools and a lot of work have been
done so far. The authors have been developed a new dis-
cretizing method of distributed parameter mechanical sys-
tems called “discrete mechanics,” which is an extension of
the case for concentrated constant systems [1, 2, 3, 4, 5].
The main concept of discrete mechanics is that we first
discretize some fundamental concepts of classical physics
such as Lagrangian and Hamilton’s principal, and then de-
rive discrete euler-Lagrange equations by using discrete
Hamilton’s principle. In [6, 7], for the 1-dimensional case,
a new control method based on discrete mechanics and
nonlinear optimization has been proposed and its applica-
tion potentiality has been confirmed by numerical simula-
tions.

This study aims at development of discrete mechanics
for 2-dimensional distributed parameter mechanical sys-
tems as an extension of the previous work for the 1-
dimensional case [6, 7]. and an application to vibration
suppression control of a film. First, Section 2 describes
details on discrete mechanics for 2-dimensional distributed
parameter mechanical systems. Next, Section 3 presents a
new control method via a blending method of discrete me-

chanics and nonlinear optimization. Then, in Section 4, the
vibration suppression control problem of a film is consid-
ered as a physical example, and some numerical simula-
tions are shown in order to check the effectiveness of the
new method.

2. Discrete Mechanics for 2-dimensional Distributed
Parameter Mechanical Systems

This section derives some important concepts on dis-
crete mechanics for 2-dimensional distributed parameter
mechanical systems. Let us denote the time variable as
t ∈ R and the position of the 2-dimensional space as
(x, y) ∈ R2. We also refer a displacement of the sys-
tem at the time t and the position (x, y) as u(t, x, y) ∈ R,
and u(t, x, y) with a subscript indicates partial derivative of
u(t, x, y) with respect to the subscript, e.g. ut, ux, uy. In this
paper, we deal with a continuous Lagrangian density which
includes through first-order partial derivative of u(t, x, y) as

Lc(t, x, u, ut, ux, uy). (1)

Next, we consider discretization of variables. As shown
in Fig. 1, the time variable t and the position (x, y) are
discretized with sampling intervals h, dx, and dy as

t ≈ h k (k = 1, 2, · · · ,K − 1,K),
x ≈ dx l (l = 1, 2, · · · , L − 1, L),
y ≈ dy m (l = 1, 2, · · · ,M − 1,M),

(2)

where k, l, and m are indices of t, x, and y, respectively.
Now, we use a new notation Uk,l,m ∈ R as a discrete

version of the displacement of the system at the time step
k and the position (l,m). Then, we assume that the con-
tinuous displacement of the system at the time t and the
position (x, y): u(t, x, y) is represented as

u(t, x, y) ≈
(1 − α)(1 − β1)(1 − β2)Uk,l,m + (1 − α)(1 − β1)β2Uk,l,m+1

+ (1 − α)β1(1 − β2)Uk,l+1,m + (1 − α)β1β1Uk,l+1,m+1

(α(1 − β1)(1 − β2)Uk+1,l + α(1 − β1)β2Uk+1,l,m+1

+ αβ1(1 − β2)Uk+1,l+1,m + αβ1β1Uk+1,l+1,m+1

(3)

with 8 displacement variables: Uk,l,m, Uk,l,m+1, Uk,l+1,m,
Uk,l+1,m+1, Uk+1,l,m, Uk+1,l,m+1, Uk+1,l+1,m, Uk+1,l+1,m+1,
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Figure 1: Discretization Setting

where α, β1, β2 ∈ R are dividing parameters (0 <
α, β1, β2 < 1). Partial derivatives of u(t, x, y) are also rep-
resented by

ut(t, x, y) ≈ Uk+1,l,m − Uk,l,m

h
,

ux(t, x, y) ≈ Uk,l+1,m − Uk,l,m

dx
,

uy(t, x, y) ≈ Uk,l,m+1 − Uk,l,m

dy
.

(4)

By substituting (2)–(4) into (1) and multiplying it by hdxdy,
we define “a discrete Lagrangian density” as

Ld
k,l,m ≈ hdxdyLc. (5)

We also define “a discrete action sum” as

S d(U) :=
K−1∑
k=2

L−1∑
l=2

M−1∑
m=2

Ld
k,l,m, (6)

and consider “a discrete variation” as

δS d(U) := S d(U + δU) − S d(U), (7)

where δU is a variation of U and satisfies the boundary
conditions:

δU1,l,m = δUK,l,m = δUk,1,m

= δUk,L,m = δUk,l,1 = δUk,l,M = 0.
(k = 1, · · · ,K; l = 1 · · · , L; m = 1 · · · ,M)

(8)

As an analogy of Hamilton’s principle in the continuous
version, we consider “discrete Hamilton’s principle” and it
states that “only a motion such that the discrete action sum
(6) is stationary, that is, S d(U) = 0, can be realized.” By ap-
plying discrete Hamilton’s principle to the discrete action
sum (6) and calculating in details, we can derive “discrete
Euler-Lagrange equations” as the following (due to limita-
tions of space, the proof is omitted).

Theorem 1 : For the discrete Lagrangian density Ld
k,l,m (5)

for 2-dimensional distributed parameter mechanical sys-
tems, the discrete Euler-Lagrange equation that satisfies
discrete Hamilton’s principle is given by

∂Ld
k−1,l−1,m−1

∂Uk,l,m
+
∂Ld

k−1,l−1,m

∂Uk,l,m
+
∂Ld

k−1,l,m−1

∂Uk,l,m

+
∂Ld

k−1,l,m

∂Uk,l,m
+
∂Ld

k,l−1,m−1

∂Uk,l,m
+
∂Ld

k,l−1,m

∂Uk,l,m

+
∂Ld

k,l,m−1

∂Uk,l,m
+
∂Ld

k,l,m

∂Uk,l,m
= 0

(k = 2, · · · ,K − 1; l = 2 · · · , L − 1; m = 2 · · · ,M − 1)

(9)

We can calculate all the KLM displacements Uk,l,m (1 ≤
k ≤ K; 1 ≤ l ≤ L; 1 ≤ m ≤ M) by using the discrete Euler-
Lagrange equations (9) under suitable initial and boundary
conditions. In addition, the discrete Euler-Lagrange equa-
tions (9) are generally nonlinear and implicit, and hence
we need some numerical solutions for nonlinear equations
such as Newton’s method in order to calculate all the dis-
placements of the system.

3. Optimal Control Method via Discrete Mechanics

In this section, a nonlinear control problem for a mathe-
matical model derived by discrete mechanics is formulated,
and a solution method of the problem is considered. First,
the setting on control inputs is shown. Denote a control in-
put at the time step k and the position (l,m) as Fk,l,m ∈ R.
If an actuator is not installed at the position (l,m), we set
Fk,l,m ≡ 0 (k = 1, · · · ,K). We also denote a set of in-
dices (l,m) such that actuators are installed as ∆. Thus, the
discrete Euler-Lagrange equations with control inputs are
given by

∂Ld
k−1,l−1,m−1

∂Uk,l,m
+
∂Ld

k−1,l−1,m

∂Uk,l,m
+
∂Ld

k−1,l,m−1

∂Uk,l,m

+
∂Ld

k−1,l,m

∂Uk,l,m
+
∂Ld

k,l−1,m−1

∂Uk,l,m
+
∂Ld

k,l−1,m

∂Uk,l,m

+
∂Ld

k,l,m−1

∂Uk,l,m
+
∂Ld

k,l,m

∂Uk,l,m
= Fk,l,m

(k = 2, · · · ,K − 1; l = 2 · · · , L − 1; m = 2 · · · ,M − 1).

(10)

In this study, the next control problem is dealt with for the
discrete Euler-Lagrange equations with control inputs (10).

Problem 1 : For the discrete Lagrangian density (5) and
the discrete Euler-Lagrange equation with control inputs
(10), find control inputs Fk,l,m (k = 2, · · · ,K − 1; (l,m) ∈
∆) that make all the specified displacements Uk,l,m (k =
κ, · · · ,K; l = 1, · · · , L, m = 1, · · · ,M) converge to 0. □

In order to solve Problem 1, we consider an optimal con-
trol approach. Using weight parameters a, b, c, we set an
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evaluation function as

J(U, F) = a
κ−1∑
k=1

L∑
l=1

M∑
m=1

U2
k,l,m

+ b
K∑

k=κ

L∑
l=1

M∑
m=1

U2
k,l,m + c

K−2∑
k=3

∑
(l,m)∈∆

F2
k,l,m

(11)

where the first and second terms evaluate the displacements
from k = 1 to k = κ − 1 and ones from k = κ to k =
K, respectively, and the third term evaluates the values of
control inputs. It can be expect that we can make all the
specified displacements converge to 0. by minimizing the
evaluation function (11). The optimal control problem for
the discrete Euler-Lagrange equation with control inputs
(10) can be formulated as

min
U, F

(11),

subject to (10),
given initial conditions, boundary conditions.

(12)

The optimal control problem (12) can be referred as a
finite-dimensional nonlinear optimization problem with
constraints, and hence we can solve it by numerical so-
lutions such as “the sequential quadratic programming
method” [8]. It is known that the sequential quadratic pro-
gramming method can be applied to a relatively large-scale
problems and effectively obtain an optimal or near-optimal
solution.

4. Vibration Suppression Control of Film

This section deals with an application to a physical sys-
tem “a film,” and confirms the effectiveness of the pro-
posed control method via numerical simulations. It is as-
sumed that the shape of the film is rectangle and the film
is clamped at four sides as illustrated in Fig. 2. Denote
the 2-dimensional position of the film as (x, y) and the dis-
placement of the film at time t and the position (x, y) as
u(t, x, y). Physical parameters of the film are set as ρ: a en-
ergy density of the film, E: tension of the film. Then, the
continuous Lagrangian density of the film is given by

Lc =
1
2
ρu2

t −
1
2

E(u2
x + u2

y). (13)

Note that the continuous Lagrangian density (13) contains
through first-order partial derivative ut, ux, uy.

Discretization setting is the same as the one explained
in the previous section. From (13), we have the discrete
Lagrangian density of the film as

Ld
k,l,m =

hdxdy

2

 ρ
(

Uk+1,l,m − Uk,l,m

h

)2

−E
(

Uk,l+1,m − Uk,l,m

dx

)2

− E
(

Uk,l,m+1 − Uk,l,m

dy

)2
 ,

(14)

m
l

F19,2

F2,19

F19,19

F2,2

Figure 2: Film

and hence from (10) we obtain the discrete Euler-Lagrange
equation of the film as

− ρ
h2 (Uk+1,l,m + Uk−1,l,m) +

E2

d2
x

(Uk,l+1,m + Uk,l−1,m)

+
E2

d2
y

(Uk,l,m+1 + Uk,l,m−1)

+ 2
 ρh2 −

E
d2

x
− E

d2
y

 Uk,l,m = Fk,l,m.

(15)

We see that (15) contains 7 displacement variables Uk−1,l,m,
Uk,l−1,m, Uk,l,m−1, Uk,l,m, Uk,l,m+1, Uk,l+1,m, Uk+1,l,m. In com-
putation of numerical solutions, a numerical stability con-
dition called “a von Neumann condition” is quite important
[9]. The next proposition gives a von Neumann condition
for the discrete Euler-Lagrange equation of the film. (due
to limitations of space, the proof is omitted.)

Proposition 1 : A von Neumann condition such that the
discrete Euler-Lagrange equation of the film (15) is numer-
ically stable is given by

0 <
E
ρ

h2
 1

d2
x
+

1
d2

y

 ≤ 1. (16)

Then, a numerical simulation is performed by the pro-
posed control method. We assume that the number of ac-
tuators is 4 and they are installed at four corners of the
film as illustrated in Fig. 2. The parameters are set as
the physical parameters: ρ = 1, E = 1, the sampling in-
tervals: h = 0.01, dx = 0.1, dy = 0.1, the total steps:
K = 50, L = 20, M = 20, the set of actuator indices:
∆ = {(2, 2), (2, 19), (19, 2), (19, 19)}, the start time step
of stabilization: κ = 45, the weight parameters of evalua-
tion function: a = 1, b = 3000, c = 1. Note that these
parameters satisfy the von Neumann condition (16).

Fig. 3 shows the simulation result on a 3D plot of the
displacements of the film Uk,l,m, From this figure, it can be
confirmed that all the displacements of the film converge to
0, and hence vibration suppression control is achieved. It
is also possible to stabilize the film at earlier time step by
tuning the parameters in the evaluation function: a, b, c.
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5. Conclusions

This study has developed discrete mechanics for 2-
dimensional distributed parameter mechanical systems and
a new control method by blending of discrete mechanics
and nonlinear optimization. A numerical simulation for a
film has shown that vibration of the film is suppressed by
control inputs, and then the whole of the film is stabilized
by the proposed method.

The future work includes the next topics; theoretical
analysis on discrete Euler-Lagrange equations and devel-
opment of feedback-type controllers.
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Figure 3: Snapshot of Film
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