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Abstract—Metro systems carry a large volume of com-
muters around in major cities and their efficiency depends
on multiple factors including the connectivity of subway
lines, train schedules, passenger distributions, management
quality, etc. In this paper, we study the network properties
of five metro systems (Beijing, Hong Kong, London, Paris
and Tokyo) and compare their relative network efficiency
in terms of two proposed metrics, namely, average station
density and station load. It is shown that among the five
systems, the Tokyo system has the shortest characteristic
path length (shortest average travel distance between two
stations), as well as highest efficiency in carrying passen-
gers around the city. Furthermore, the London metro has a
better tolerance to faults in a local scale, and the Paris sys-
tem outperforms others in terms of level of convenience to
commuters due to its high station density and low load.

1. Introduction

Rapid transit systems, often called metro or subway sys-
tems, are transportation systems carrying the largest vol-
ume of commuters in major cities, and their reliability, effi-
ciency, safety, levels of comfort, convenience and accessi-
bility are often perceived by travellers and local commuters
as indicators of the quality of public transportation of the
cities [1]. Major cities, due to increasing traffic demands
and ever-extending city coverage, are continuously expand-
ing their metro networks, resulting in complex subway sys-
tems that possess high station densities and intricate inter-
station couplings [2]. Design and scheduling of metro sys-
tems to optimize performance has become important con-
siderations in the development of public transportation sys-
tems. Moreover, the study of networks, under the notion
of complex networks, has recently become popular due to
the intriguing discovery of a number of universal properties
in various physical and man-made networks [3, 4] and the
promising applications that have been developed in various
practical fields such as communications, power systems, fi-
nance, disease control, etc. [5]–[10]. Results from complex
networks research are highly relevant to the study of trans-
portation, especially in the provision of appropriate analyt-
ical tools for characterizing the structure of metro systems
which are practical forms of networks and for understand-
ing the operations of a complex system such as metro sys-
tems [11, 12]. Furthermore, the huge investment in this
transportation infrastructure and the impact to the public

certainly justify a more thorough investigation of the fac-
tors affecting performance, thus allowing a more informed
planning and design for future development.

The cross-disciplinary study of subway systems from
a perspective of complex networks is still relatively rare.
The earliest work reported by Latora and Marchiori [13]
showed that the Boston subway network exhibited the
small-world property and introduced the concept of net-
work efficiency to give useful insights on the general char-
acteristics of real transportation networks. In the work of
Derrible and Kennedy [14], most metros were found to
exhibit scale-free and small-world structure. Also, An-
geloudis and Fisk [2] studied 20 subway networks using
a ‘toy’ model and showed that these networks, with high
connectivity and low maximum vertex degrees, provide ro-
bustness to random attacks. In the work of Leeet al. [15],
the statistical properties of the Metropolitan Seoul subway
network were analyzed, taking the passenger flow as the
weight of the edge and arriving at a power-law weight dis-
tribution. Furthermore, Yanget al. [5] combined node de-
gree and betweenness to assess the node importance, and
showed that a scale-free transit network exhibited a rela-
tively high fault tolerance to random failure but a relatively
low degree of connection reliability against malicious at-
tack.

In this paper, five subway networks are studied via an-
alyzing some network parameters such as degree distribu-
tion and network efficiency, the aim being to identify the
factors affecting performance.

2. Topological properties of subway network

A complex network withN nodes can be represented as
a graphG = (Nd, l), whereNd = {n1, n2, ..., nN} denotes the
set of nodes, andl = {l1, l2, ..., lk} denotes the set of links.
A graphG can be fully described by an adjacency matrix
A, which is anN ×N matrix whose entryai j (i, j = 1, ...,N)
equals to 1 if there exists a link between nodesi and j, and
zero otherwise. In this paper, a node is a subway station, if
two stations are directly connected by a track, then they are
connected by a link.

2.1. Characteristic path length

Shortest path length, denoted asdi j , is the shortest
length from nodesi to j, which plays an important role in
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transportation and communication networks. Suppose one
needs to commute from one station to another by subway:
the shortest path provides an optimal pathway in the sense
that one would achieve a fast transfer, saving time and re-
sources. A measure of the typical separation between two
nodes in a complex network is given by the characteristic
path length, also known asaverage path length, which is
defined as the mean shortest path lengths over all pairs of
nodes [3]:

L =
1

N(N − 1)

∑

i, j∈N,i, j

di j (1)

This parameter directly indicates the global connectivityof
a network. A smaller value ofL represents smaller topolog-
ical distance between any two nodes and better connectivity
of the whole network.

2.2. Clustering coefficient

Clustering coefficientC, also known as transitivity, is a
typical property of acquaintance networks, where two indi-
viduals with a common friend may know each other. One
definition of C, introduced by Watts and Strogatz [3], is
given as follows. A quantityci (local clustering coefficient
of nodei) is first defined to describe how likelya jm=1 for
two neighborsj andm of nodei. It is defined as the ra-
tio betweenei and ki(ki−1)

2 , in which ei denotes the actual
number of edges between the neighbors of nodei, i.e.,

ci =
2ei

ki(ki − 1)
=

∑
j,m ai j a jmami

ki(ki − 1)
(2)

The clustering coefficient of a graph is the average ofci

over all nodes:

C =
1
N

∑

i∈N

ci (3)

Thus, 0≤ ci ≤ 1. The clustering coefficient indicates the
local clustering property and shows the fault tolerance char-
acteristic. Taking the subway network as an example, when
one track is out of function, the traffic will not be affected if
the neighboring stations are connected. Thus, a larger value
of C denotes a better tolerance to fault in a local scale.

2.3. Network (Structural) Efficiency

EfficiencyE, introduced by Latora and Marchiori [13],
is a measure of how efficient information is exchanged over
the network. Denoted asǫi j , efficiency of transfer from
nodesi to j is taken as being inversely proportional to the
shortest path length, i.e.,ǫi j = 1

di j
∀i, j, and the network ef-

ficiencyE is defined as:

E(G) =
1

N(N − 1)

∑

i, j

ǫi j =
1

N(N − 1)

∑

i, j

1
di j

(4)

Note thatE(G) is the global efficiency of the whole net-
work and is denoted asEglob. Also, E(.) can be defined
to characterize the local properties ofG by evaluating the

Table 1: Basic data of subway scale (as of 2015)

City Number of stations Number of lines
Beijing 274 18
Hong Kong 85 10
London 356 13
Paris 295 15
Tokyo 205 13

efficiency ofGi , the subgraph consisting of the neighbors
of nodei but excluding nodei. The local efficiencyEloc is
then defined as the average efficiency of all subgraphs:

Eloc =
1
N

∑

i⊂G

E(Gi) (5)

Eloc plays a similar role asC, and tells how efficient the
communication between the neighbors ofi is in the ab-
sence of nodei, reflecting the robustness of local connec-
tion when nodei is removed.

However, this definition ofE is not fully consistent with
the subway operation. In subway networks, segments of
some lines overlap, thus affecting transportation efficiency.
To correct this, if nodesi and its neighborj are connected
by multiple edges, we scale the link connecting the two
nodes by a factorwi j and use the scaled link to compute
di j , i.e.,

wi j =
1
n

(6)

wheren is the number of edges between stationi and its
neighbor stationj. Then, E is calculated based on the
weighted network structure.

2.4. Average station coverage area and load

In order to evaluate the average distance from a random
passenger to a subway station and the average passenger
load of a station, we propose two parameters, namely,av-
erage station coverage area(ASCA) andaverage station
load (ASL). Here, we define ASCA as as the ratio of sub-
way network areaSall and the number of station,i.e., ASCA
=

Sall
N . Thus, ASCA reveals the average area served by a

station, or equivalently, the average distance to a subway
station for passengers, and the station density. Moreover,
ASL is defined as the ratio of average daily passenger flow
P and the number of stations, i.e., ASL= P/N, reflecting
on the average crowdedness of the stations.

3. Statistical results

In this paper, the subway networks in Beijing, Hong
Kong, London, Paris and Tokyo are studied. Basic infor-
mation of these subway networks are listed in Table 1.

Figure 1 shows the shortest path length distribution of
the five subways. It is observed that they basically follow
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Figure 1: Shortest path length distribution

Table 2: Characteristic path lengths of subway networks

City Beijing HK London Paris Tokyo
N 274 85 356 295 205
L 15.02 10.97 14.03 11.77 10.13

theΓ distribution and Hong Kong has the smallest value of
network diameter, which is defined as the maximal shortest
path length of a network.

The characteristic path lengthsL for the five systems are
listed in Table 2, which shows that Tokyo offer the shortest
characteristic path length, and Hong Kong and Paris having
slightly longer characteristic path lengths.

Clustering coefficientsC are calculated and listed in Ta-
ble 3, from which we can see that the London subway has
a relatively biggerC, implying a better tolerance to faults
in a local scale.

EfficiencyE, based on weighted edges as explained in
Section 2.3, is compared in Table 4. It can be shown from
the result that all those five subway networks behave less
efficient in the topological level compared to a fully con-
nected network (which has a theoretical efficiency of 1).
This is because the number of edgesQ ≪ N(N − 1)/2
and the neighbors of most nodes are isolated from each
other. From the values ofE we can see that the Tokyo
and Hong Kong subways perform better than others in the
global scale while the Tokyo and London systems perform
better in the local scale.

In this paper, the area served by a subway network is
conveniently taken as a rectangle, whose edges are defined
by the position of the farthest stations in the four directions.
For example, for the Beijing subway shown in Fig. 2, the
rectangular boundaries are decided by the farthest stations:
Nanshao, Tiangongyuan, Suzhuang and Lucheng. For a
fair comparison, the sea areas within the areas covered by
the subway are removed for Tokyo and Hong Kong. Fur-

Table 3: Clustering coefficients of subway networks

City Beijing HK London Paris Tokyo
C 0.0024 0.0059 0.0409 0.0163 0.0285

Table 4: Efficiency of subway networks

City Beijing HK London Paris Tokyo
Eglob 0.1012 0.1526 0.1261 0.11430.1560
Eloc 0.0024 0.0058 0.0339 0.0146 0.0319

Suzhuang

Lucheng

Tianguoyuan

Nanshao

area served

ring 4

ring 3

ring 2

ring 1

center

boundary defined by farthest stations

Figure 2: Subway map representation. Boundary defined
by 4 farthest stations in 4 directions. Station names refer to
Beijing system.

ther, as Hong Kong is a mountainous city, where only 25%
of the defined rectangle is inhabited, we adjust the effec-
tive area served by the subway accordingly. Table 5 lists
the areas and passengers served by the individual subway
systems.

In order to see the station density variation, we divide the
area served into five concentric rectangular regions (rectan-

Table 5: Data on areas and passengers served by subways

City Beijing HK London Paris Tokyo
Area

served 3217.0 177.2 1920.0 347.0 594.3
(sq. km)

Passengers
per day 10.876 4.490 8.245 4.130 8.500

(million)
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Figure 3: ASCA vs. diagonal distance from center (ring).
x-axis is ring number, 1 being the first inner ring and 5
being the entire area.

Table 6: Average station load

City Beijing HK London Paris Tokyo
ASL /day
(x1000) 39.69 52.82 23.16 14.00 41.46

gular rings), along the diagonal direction. Fig. 3 shows the
ASCA versus the diagonal distance from center (ring). For
instance, ASCA at ring= n is the ASCA of the inner area
within the nth rectangular ring. Also the values of ASL
are shown in Table 6. We see that the Paris subway has
relatively small ASCA and ASL, and therefore has higher
density and is more convenient for passengers. In addition,
stations in Hong Kong, Paris and Tokyo are basically dis-
tributed uniformly over the city.

4. Conclusion

The topological structure of five subway networks are
studied in terms of the characteristic path length, clustering
coefficient, and network efficiency. We propose two
parameters, namely, average station coverage area (ASCA)
and average station load (ASL), to evaluate the station
density and the level of convenience to passengers. Among
the five subway networks, the Hong Kong subway has the
smallest characteristic distance, and the Tokyo subway has
the highest topological efficiency. The London subway has
a larger value of clustering and local efficiency, suggesting
that it has a better tolerance to fault in a local scale. The
Paris subway offers the highest level of convenience to
passengers due to the low ASCA and ASL.
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