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Abstract—Chaotic time series numerically gen-
erated by deterministic nonlinear dynamics are of-
ten used as pseudorandom numbers for cryptography.
Here, we show a method for time series analysis to
characterize complexities in chaotic dynamics in terms
of string entropy, as a class of information entropy, es-
timated from the relative frequencies of binary-coded
characters transformed from a chaotic time series. We
apply our method to various chaotic time series and
discuss their performance as pseudorandom numbers
for chaos-based cryptography.

1. Introduction

Chaotic dynamics have been often applied to cryp-
tography, where the chaotic time series numerically
generated by the dynamics were used as pseudoran-
dom numbers to encrypt plaintexts and message sig-
nals [1]–[12]. Recently, we have derived the augmented
Lorenz (AL) equations as a nondimensionalized dy-
namical model for turbulent thermal convection with
a high Rayleigh number exceeding 106 from the New-
tonian equations of motion of a chaotic gas turbine
[13]. The AL equations have been applied to a one-
time pad chaotic cryptography, where the chaotic time
series generated by the AL equations were used as
pseudorandom numbers to mask a speech signal and a
plaintext [14].

The randomness of pseudorandom numbers is of
critical importance when using them in cryptosystems
to encrypt messages. A low degree of randomness will
facilitate code breaking by cryptanalysists. In fact, the
statistical tests for the randomness of pseudorandom
numbers to be used in cryptosystems, i.e., NIST 800-
22, is published by the National Institute of Standards
and Technology (NIST) [15], which is widely recog-
nized as the standard protocol to assess the random-
ness.

We have recently proposed an information-
theoretical method, referred to as the string entropy
method [16], to evaluate the degree of complexity in a
chaotic time series. Although the string entropy test
is essentially the same as the entropy test included in
NIST 800-22, it appears to also be effective to char-
acterize the dynamical nature of chaotic dynamics. In
this paper, we apply our method to the chaotic time se-

ries numerically generated by various chaotic dynamics
and show how it is effective to characterize the chaotic
nature.

2. String Entropy

Given a time series {xi}N
i=1 with a sampling time

interval of T , the string entropy S is defined as follows.
First, xi is transformed into binary digits bi with the
threshold crossing as

bi = 0 if xi < xc , (1)
bi = 1 otherwise , (2)

where xc is an appropriately chosen threshold around
which bi is distributed with equal probability. We
partition the binary series {bi}N

i=1 into a sequence
of Q segments consisting of D binary digits, where
N = DQ. Each segment is mapped to an “alpha-
bet” binary-coded in D bits, where each alphabet
symbolizes the time evolution represented by D suc-
cessive realizations of the dynamical system. Thus,
we obtain a string of Q alphabets as random realiza-
tions of 2D possible alphabets denoted as {an}2D

n=1.
In the case of D = 7, we have 27 = 128 alphabets
{‘0000000’, ‘0000001’, . . . , ‘1111111’} corresponding
to {‘0’, ‘1’ . . . , ‘127’} in the decimal expression. In
this case, the total number of the alphabets is equal
to that of the ASCII codes. With the frequency of ap-
pearance for each alphabet an (n = 1, . . . , 2D), we
estimate a histogram, from which the probability den-
sity function p(an) is calculated. The histogram repre-
sents the statistical distribution of the coarse-grained
time evolution. The string entropy S is defined and
calculated as

S = −
2D∑

n=1

p(an) log2 p(an) . (3)

S takes the maximum value Smax = D [bits] if
and only if p(an) = 2−D regardless of n. Hence, S
is normalized with respect to Smax, and the normal-
ized string entropy H is defined as H = S/D, where
0 ≤ H ≤ 1 and H = 1 is obtained for completely
random processes.

Let us consider the relationship between the string
entropy and the Lyapunov exponent for a simple case,
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i.e., a one-dimensional chaotic map xn+1 = f(xn). In
this case, the Lyapunov exponent λ is defined as

λ = log | f ′(x0) | , (4)

where f ′ denotes the derivative of f with respect to x
and x0 denotes the initial point. The Lyapunov expo-
nent estimated using Eq. (4) is usually averaged over
many initial points in the chaotic attractor (denoted
as Ω) to obtain the global Lyapunov exponent as

λ = lim
N→∞

1
N

N−1∑
n=0

log | f ′(xn) | ,

=
∫

Ω

μ(x) log | f ′(x) | dx , (5)

where μ(x) denotes the probability density function of
x. The string entropy is estimated using the probabil-
ity density function p(a) of the alphabets coded in D
bits. Hence, the global Lyapunov exponent is related
via Eq. (5) with the string entropy, since p is the D
successive products of μ of the coarse-grained x with
the binary expression along a trajectory in Ω.

A similar relationship holds for multi-dimensional
chaotic maps and chaotic flows by considering the Ja-
cobian of the chaotic dynamics.

3. Numerical Analysis and Discussion

We conducted numerical experiments on estimating
H with the parameter settings of D = 7, N = 120000,
Q = 20000, T = 1 for the logistic map, tent map,
the Lorenz equations, and the AL equations, where all
numerical calculations were performed in double preci-
sion on a 32-bit machine. No particular methods were
used to reduce the accumulation of roundoff errors.

The logistic map is defined as xn+1 = αxn(1 − xn),
where 0 ≤ xn ≤ 1. Figures 1(a), (b), (c), and (d)
show a typical example of the estimated histograms
under randomly chosen initial points (x0) for α =
3.95, 3.98, 3.99, and 4, respectively. The threshold
value was set to xc = 0.5. The initial 5000 data points
were discarded to eliminate the initial transient parts
from the analysis. Estimates of H are summarized in
Table 1. At α = 3.95, 3.98, and 3.99, there are missing
alphabets regardless of the choice of x0. These miss-
ing alphabets can be the clues to identify the value of
α. At α = 4, all alphabets appear with approximately
equal probability and H approaches unity.

The results for the tent map are shown in Fig. 2 and
Table 1. The tent map is defined as xn+1 = 1 − 2 |
xn − 0.5 |. The convergence of xn to the fixed points
of x = 0 and x = 1 was circumvented by restricting
the domain of xn to ε ≤ xn ≤ 1 − ε with ε = 10−6.
The threshold value was set to xc = 0.5, and the initial
5000 data points were eliminated from the analysis. In

Table 1: Estimates of the normalized string entropy
H for chaotic time series (D = 7 and T = 1).

Dynamics H
Logistic map (α = 3.95) 0.8877
Logistic map (α = 3.98) 0.9486
Logistic map (α = 3.99) 0.9553
Logistic map (α = 4) 0.9994

Tent map 0.6625
Lorenz equations: x 0.9954
Lorenz equations: y 0.9961

AL equations: x 0.9991
AL equations : y100 0.9984

contrast to the logistic maps, there are many missing
alphabets, whereas the alphabet ‘0000000’ (‘0’ in the
decimal expression) appears very frequently. These
observations were independent of the choice of x0. The
estimated H is considerably smaller than those for the
logistic maps. Hence, the tent map cannot be used as
a secure pseudorandom number generator.

The results for the Lorenz equations [17] are shown
in Figs. 3(a) and (b),and in Table 1. The Lorenz
equations are defined as a three-dimensional system
of ordinary differential equations: ẋ = σ(y − x),
ẏ = rx− y − xz, ż = −βz + xy, where σ = 10, r = 28,
and β = 8/3. The equations were numerically inte-
grated using the 4th-order Runge-Kutta method with
a time width of Δt = 0.01. The initial conditions for x,
y, and z were given as pseudorandom numbers subject
to the standard normal distribution. The initial 5000
numerical solutions were eliminated from the analysis.
The threshold values were set to xc = 0 and yc = 0.
For both x and y, there are no missing alphabets and
several alphabets appear more frequently than other
alphabets. Estimates of H for x and y are close to
unity but slightly smaller than that for the logistic
map with α = 4.

Our final case study is concerned with the AL equa-
tions defined as

ẋ = σ
{

tr
[
(M−1)2y

] − x
}

, (6)

ẏ = Rx − Mzx − y , (7)
ż = Myx − z , (8)
R = R0M2ΦW , (9)

where x is a dimensionless scalar variable, y =
diag(y1, . . . , yn, . . . , yK) and z =
diag(z1, . . . , zn, . . . , zK) are dimensionless K ×K
diagonal matrices, tr(·) represents the diagonal sum of
a matrix, σ and R0 are dimensionless parameters cor-
responding to the Prandtl and reduced Rayleigh num-
bers, respectively, and M denotes the diagonal matrix
given by M = diag(m1, . . . , mn, . . . , mK) with

- 134 -



0

100

200

300

400

500

600

700

0 20 40 60 80 100 120

F
re

qu
en

cy

Alphabet

(a) a = 3.95
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Figure 1: (Histograms of alphabets for the logistic
maps with (a) α = 3.95, (b) α = 3.98, (c) α = 3.99,
and (d) α = 4. D = 7 and T = 1 (one time step).
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Figure 2: (Histograms of alphabets for the tent map.
D = 7 and T = 1 (one time step).
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Figure 3: Histograms of alphabets for (a) x and (b)
y of the Lorenz model. D = 7 and T = 1 (100 time
steps).
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Figure 4: Histograms of alphabets for (a) x and (b)
y100 of the AL model. D = 7 and T = 1 (2500 time
steps).

m1 = 1 and m2 through mK randomly taking values
of mn = n or mn = n + 0.5. M can be used as a
secret key for cryptography [14]. For the definitions of
the diagonal coefficient matrices Φ and W, see [14].
The bifurcation parameters σ, R0, and φ were set to
σ = 25, R0 = 3185, and φ = 0.36 [rad].

We numerically integrated the AL equations in a
similar way to the Lorenz equations, except with a
time width of Δt = 4 × 10−4 and K = 101 under a
random setting of M and the initial conditions of x, y,
and z given as pseudorandom numbers subject to the
standard normal distribution. Time series x and y100

were obtained by discrete sampling of the numerical
solutions with a sampling time of T = 1 (2500 time
steps) and the threshold values xc = 0 and yc = 0.

Figures 4(a) and (b) show typical examples of the
histograms for x and y100, respectively. Estimates of
H are summarized in Table 1. For both x and y100,
there are no missing alphabets. Estimates of H for x
and y100 are close to unity.

We next estimated H as a function of the bifurcation
parameter R0 for y100 of the AL equations. Figure 5
shows the estimates of H as a function of R0, where
the sampling time interval T was set to 0.01 (25 time
steps) to reduce the total computational time for the
numerical integration of the AL equations and R0 was
increased from 1000 to 3190 with an increment width
of ΔR0 = 10. H increases as R0 increases, and ap-
proaches unity at R0 > 3000, where the AL equations
appear to generate fully developed chaotic time series.

In conclusion, our numerical analysis indicates that
the string entropy method is capable of characterizing
chaotic dynamics. In particular, the missing alpha-
bets in the estimated histograms provide important
features of the chaotic trajectories governed by the
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Figure 5: Estimates of the normalized string entropy
as a function of the bifurcation parameter R0 for y100

of the AL equations. ΔR0 = 10, D = 7, and T = 0.01
(25 time steps).

dynamics. When applying the chaotic dynamics to
cryptography, H should be as close as possible to its
maximum value of unity, and there should be no miss-
ing alphabets. In this sense, the AL equations is use-
ful for a pseudorandom generator for a one-time pad
cipher. Recently, we have verified that the pseudoran-
dom numbers generated by the AL equations pass the
statistical tests of NIST 800-22, which will be reported
in a future paper.
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