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Abstract– Many real-world networks do not have simple 

static structures but dynamics on them, such as many social, 
biological and computer networks. Such networks are 
heterogeneously connected. It is meaningful to investigate 
the dynamical robustness of complex networks against 
random failures and targeted attacks. So far the theory for 
analyzing the dynamical robustness against random failures 
has been developed, but that against targeted attacks is 
missing. This paper derives an analytical expression for the 
critical value which measures the dynamical robustness 
against targeted attacks for a general kind of coupled 
dynamical networks. 
 
1. Introduction 
 

Real-world networks are often heterogeneous, which 
have a wide range of degree distribution. One famous case 
is the scale-free network with power law degree 
distribution [1]. Such networks are known to be robust 
against random failures but very fragile to targeted attacks 
at hubs [2], which means preferential removal of high-
degree nodes. This is the result of the analysis in the 
framework of structural robustness where only 
connectivity of the networks governs the robustness. The 
theoretical treatment has been based on the percolation 
theory [3, 4, 14]. However, it is also necessary to study 
dynamical robustness of complex networks, which is 
especially important in biological phenomena because the 
function of biological networks is usually considered to 
depend on both structure and dynamics [5]. 

In this paper we deal with dynamical robustness of 
diffusively coupled oscillator networks with complex 
topology. The dynamical robustness represents how the 
dynamical behavior in the whole network is tolerant against 
local failures. In the dynamical robustness framework, the 
local failures correspond to inactivation of the oscillator 
nodes. The fraction of the inactivated nodes is denoted by 
p. The order parameter is introduced to measure the level 
of the oscillatory behavior in the whole network and the 
critical inactivation ratio , at which a loss of oscillatory 
dynamics (aging transition [6]) occurs, is used to measure 
the network robustness. This framework for study of 
oscillator networks has been first introduced for globally 
coupled networks in Ref. [6] and subsequently extended to 

complex networks [7-11]. These studies have employed the 
Stuart-Landau oscillators which generate oscillations via 
the Hopf bifurcation. The most striking result of the 
dynamical robustness analysis is that the oscillator network 
can be highly fragile to the attack targeted at low-degree 
oscillator nodes, instead of high-degree hub nodes [7]. The 
critical value  has been analytically obtained for random 
failures [7], but not for targeted attacks. The main work of 
this paper is to give the theoretical  for targeted attacks, 
which works for a general diffusively coupled oscillators 
including the Stuart-Landau model. It is shown analytically 
that the property of dynamical robustness is different from 
the structural robustness, indicating that the effects of high-
degree attack, low-degree attack, and random failures 
depend on the range of parameters.  

 
2. Methods 
 

We consider a general kind of diffusively coupled 
oscillators as below: 

 

  for   (1) 
where  is the function representing the dynamics of 
individual nodes, exhibiting a bifurcation; N is the number 
of oscillators;  is the complex value representing the state 
of the jth oscillator;  is the adjacency matrix which takes  
any real value and does not have to be symmetric;  is a 
tuning term. If   depends on  , then it 
becomes a weighted network, which is studied in Ref. [8].  
Although  is supposed to be complex, we assume based 
on numerical observation that all nodes tend to have the 
identical phases, so  can be viewed as real.  
 A widely used special case is described as follows [6]: 

 

 for   (2) 
where   is the natural frequency;   is the coupling 
strength. Here  takes the value of 0 or 1. Later we will 
consider model (2) as well as a weighted coupling case 
described as follows [8]: 
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 for ,  (3) 
where  is the degree of the jth node and  
is the average degree. An isolated oscillator (K=0) is called 
the Stuart-Landau oscillator, which represents the normal 
form of Hopf bifurcation which occurs at  . An 
oscillator is called active when   and inactive 
when  . An inactive oscillator tends to 
approach the origin with   after transient damped 
oscillations while an active oscillator tends to the limit 
cycle with amplitude . Such notations can also be 
used for the general case (1): an active oscillator with 

  and an inactive one with  . 
Therefore random failures and targeted attacks can be 
defined as inactivation of active oscillators. 

The order parameter  is defined to measure the level 
of oscillation of the network: . As the ratio 

  of inactive oscillators increases from 0 to 1, the order 
parameter   decreases and will reach 0 at some critical 
ratio  . We can use   as a measure of dynamical 
robustness. To calculate the critical ratio , we assume the 
heterogeneous (degree-weighted) mean field 
approximation [7, 12]. Moreover we remove the phase 
rotation of all nodes and assume that every  is real. Let 

 and then 
  (4) 
where  and  are the sets of active and inactive nodes, 
respectively. Then the mean-field approximation gives 
  (5) 
This equation assumes that every link connects to any 
node with the same probability, i.e. the network is 
uncorrelated. By substituting Eq. (5) into Eq. (1) and 
considering the condition for an equilibrium, we obtain 

 

 

Then, it follows 

  , (6) 

where  . 

 
The derivative of Eq. (4) to , becomes 
 

 . 

  (7) 
 

From the inverse function theorem, (4) has a derivable 
solution if and only if J is nonsingular. It is easy to see that 

the condition corresponds to the case when the network is 
still active.  Therefore at the critical ratio , J is supposed 
to be singular:  , and thus we get the 
equations below: 

  (8) 

 For random failures, Eq. (8) becomes  
  

  (9) 

and thus 

  (10) 

 
 For targeted attacks, we sort the indices of oscillators by 
the preferential order of attacks, and thus the oscillators 

  are inactive and   are active. 
Since the right-hand side if Eq. (8) is supposed to be a 
monotone function of  , there has to be a solution  
satisfying the following equation.  

     (11) 

The solution  is numerically found in practice. 
 For the coupled Stuart-Landau oscillator model in Eq. 
(2), the expressions become as below: 
 For random failures: 

  (12) 

This formula is consistent with the previous result [7]. 
 For targeted attacks: 

  (13) 

 For the weighted coupling model in Eq. (3), it turns out 
to be very simple: 
 For random failures: 

  (14) 

 For targeted attacks: 
   (15) 

 
 Obviously in the case of weighted coupling networks 
the low-degree attack always gives the higher  and the 
high-degree attack gives the lower . 

 
3. Results 
 
 In this section we show that the theoretically derived  
is valid in numerical simulations for the Stuart-Landau 
model and the weighted coupling Stuart-Landau model. 
Numerical computation is run by the Matlab’s built-in 
function ode45, a four-five order Runge-Kutta method. All 
results are sampled after running 1000 time steps. For 
targeted attacks we consider the special cases of attacks 
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targeted at the high-degree nodes (high-degree attack) and 
at the low-degree nodes (low-degree attack). Therefore the 
sorting of attack preference is just sorting by degrees.  
 Figure 1(a) shows the time courses of the oscillatory 
dynamics after a sufficiently long time, for the whole 
oscillators, the active group, and the inactive group. Each 
curve represents the real part of the state variables averaged 
over each group. The mean value of all oscillators gets 
stable at time 500. Figure 1(b) shows the procedure of the 
aging transition for a randomly connected network. The 
behavior of the curve near  is studied in Ref. [6]. In this 
case, the network is more vulnerable to the low-degree 
attack than to the high-degree attack. 
 Figure 2 shows the critical ratio  vs coupling strength 
K. The numerical results match well with the theoretically 
computed . In Fig. 2(a), the low-degree attack leads to 
the smaller  compared with the random failure and the 
high-degree attack for the whole range of K. However, this 
property does not hold when the parameter values of a and 
b are changed.  From Eq. (13), it is easy to see that when a 
is very small, the high-degree attacks will finally have 
lower , as shown in Fig. 2(b) with a=0.1 and b=1.  
 Figure 3 shows the weighted coupling case. As predicted 
by Eq. (15), the high-degree attack gives the lowest  
while the low-degree attack gives the highest, which 
matches the result in [8]. 
(a) 

 
(b) 

 
 
 

(c) 

 
Figure 1. (a)(b) Mean values of oscillators vs time for 
different p. (a) is the case of random failure at p=0.6, (b) is 
the damped case of random failure at p=0.9. (c) The order 
parameter   vs inactivation ratio p. The parameters are 
set at N=100, connection density d=0.3, a=b=1,  =0.1, 
and K=5. 
 
(a) 

 
 
(b) 
 

 
Figure 2. The critical ratio  vs the coupling strength K. 
The number of oscillators is N=1000; the scale-free 
network is built by Barabási–Albert method with 
preferential attachment of 40 links each step.  =0.1. (a) 
a=b=1; (b) a=0.1, b=1. 
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Figure 3. The critical ratio  vs the coupling strength K for 
the weighted network. The number of oscillators is N=1000; 
the scale-free network is built by Barabási–Albert method 
with preferential attachment of 40 links each step. =0.1. 
(a) a=b=1; (b) a=0.1, b=1. 
 
 
4. Conclusions 
 
 In this study, we have derived the theoretical formula for 
the critical value of   for targeted attacks in a general 
network model of diffusively coupled bifurcating systems. 
The theoretical results are in good agreement with the 
numerical ones in the scale-free networks of coupled 
Stuart-Landau oscillators and the weighted coupling model. 
It has been demonstrated that the attack method which is 
most dangerous for network robustness can change 
depending on the dynamics of the individual components 
of the network. 
 The theoretically derived critical values in Eqs. (9)-(10) 
are not confined to these cases and should work for other 
types of targeted attacks. However, the computation of the 
critical ratio requires the mean-field approximation, thus 
the theoretical   may be problematic for networks with 
high-order connection, such as correlated networks [13]. 
Since the theoretical   only depends on the degree 
distribution and attack preference, it has no high-order 
information of the network.  
 Future works will consider other types of dynamical 
components as well as different preferential attacks. 
Moreover, it is worth extending the study to correlated 
networks and pulse-coupled networks.  
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