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Abstract—A common distribution of areas (or
mass) is observed in fragments of glass, city roads,
and cracking patterns. In order to study a generation
mechanism of the scaling law, we consider a fractal-like
hierarchical network construction based on random di-
visions of rectangles. The stochastic process makes a
Markov chain and corresponds to directional random
walks with splitting into four particles. We derive a
combinatorial analytical form and its continuous ap-
proximation for the distribution of rectangle areas, and
show a good fitting with the actual distribution in the
averaging behavior of the divisions.

1. Introduction

Scaling laws have been observed in complex systems.
One of them, there is a common interesting charac-
teristic; the frequency distributions have a fat-tail in
fragment-size and -mass of glass [1][2], areas enclosed
by city roads [3][4], and pore size/volume in random
packings [5][6]. In particular, it is attractive that the
distribution in fragmentation of glass is changed from
a lognormal to a power-law-like according to low and
high impacts [1], which determine the limitation of
breakable sizes. For understanding the fundamental
mechanism of such phenomena, we consider a spatial
model based on random division process. As a scal-
able and distributed design method, we propose a ge-
ographical network construction [7] for load balanc-
ing in the adaptive change of node’s territories assum-
ing on a wireless communication environment. This
planar network consisting of short links between no-
hub nodes with small degrees is not the well-known
scale-free network generated by a selfish “rich-gets-
richer” rule, but a generalization of multi-scale quar-
tered (MSQ) network model [8, 9] from the division of
square limited as a self-similar tiling to that of rectan-
gle. Therefore, it is both efficient and robust.

2. Generalized MSQ Network

We consider a two-dimensional L × L square, in
which lattice points give the feasible setting positions

of nodes. Initially, there exist only the outer square
without lattice points. We propose the network con-
struction as follows. At each time step, a rectangle is
chosen uniformly at random (u.a.r), and it is divided
into four smaller rectangles. For the division, verti-
cal and horizontal axes are also chosen u.a.r from seg-
ments on the L × L square lattice. Then, the smaller
rectangle with an area x× y (x, y denote the two edge
lengths) is generated from the chosen rectangle with
an area x′ × y′. Simultaneously, rectangles with the
areas x′−x×y, x×y′−y, and x′−x×y′−y are gen-
erated. Here, each edge length x, y ∈ Z+ is randomly
chosen as a positive integer in x + 1 ≤ x′ ≤ L and
y + 1 ≤ y′ ≤ L. The case of L → ∞ gives a general
position for the division point.

The stochastic network generation makes a Markov
chain. The state is represented by a vector
(n11, . . . , nxy, . . . , nLL), where nxy denotes the num-
ber of rectangle with the area x×y (It is degenerately
simplified in Fig. 1, when the difference of areas is
ignored for discussing the distribution of layers in sub-
section 3.2). In particular, the emanative transition
probability to divide a rectangle with the area x× y is
not fixed but proportional to nxy because of the uni-
formly at random selection of a face. In other words,
the probability depends on a sequence of chosen rect-
angles during the transition before a final absorbing
state for the indivisible width x = 1 or y = 1. Thus,
we generate a hierarchical network that consists of sub-
divided rectangles.

3. Scaling Law of Area Distribution

3.1. Combinatorial Analysis

For the network construction, the recursive process
can be regarded as a directional random walk of a par-
ticle with splitting into four copies, when a pair (x, y)
of edge lengths of a rectangle is corresponded to the
position of particle in the x-y coordinates, as shown
in Fig. 2. A particle is randomly chosen at a time
step, and moves toward smaller coordinate values from
(x′, y′) to (x, y), where x < x′ and y < y′, until the
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Figure 1: Branching tree diagram of the state vector
(n1, n2, . . .) for the division processes, where nl is the
number of faces on the l-th depth. Each fraction de-
notes the transition probability.

boundary at x = 1 or y = 1.
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Figure 2: Correspondence between the division of a
rectangle and the directional random walk with split-
ting.

The average behavior is described by the following
system of difference equations for 2 ≤ x, y ≤ L − 1.

∆nxy = −pxy +
∑

x′,y′

4px′y′

(x′ − 1)(y′ − 1)
, (1)

where ∆nxy is the average difference of nxy in one step,

and pxy
def
= nxy/

∑

x”>1y”>1 nx”y” is the existing prob-
ability of a particle at (x, y). The factor 4 in the nu-
merator of right-hand side of Eq.(1) is due to feasible
positions of the x×y at left/right and upper/lower cor-
ners in the division of x′ × y′. The denominator is the
combination number for the relative positions of ema-
nating particles in the intervals [1, x′−1] and [1, y′−1].
The sum is taken over the integers x+1 ≤ x′ ≤ L and
y + 1 ≤ y′ ≤ L for a given (x, y).

From ∆nxy = 0 in Eq.(1), we have

pL−1L−1 =
4pLL

(L − 1)2
,

pxL−1 = pL−1y =
4pLL

(L − 1)2
, x > 1, y > 1,

pL−2L−2 =

(

1 +
4

(L − 2)2

)

4pLL

(L − 1)2
.

In general, we obtain the solution by applying the
above in decreasing order of x and y recursively.

pxy =

{

1 +
∑

P

(

Πl
i=1

4

(xi − 1)(yi − 1)

)

}

4pLL

(L − 1)2
,

(2)
where

∑

P
denotes the sum for a set of paths through

the points (x1, y1), (x2, y2), . . . , (xn, yn), with xi, yi ∈
Z+, x < x1 < x2 < . . . < xi < . . . xl ≤ L − 1, and y <
y1 < y2 < . . . < yi < . . . yl ≤ L− 1 in all combinations
of l = 1, 2, . . .min{L− 1 − x, L − 1 − y}.

By substituting the solution pxy of Eq.(2) into the
following right-hand sides,

n1y =
∑

x′>1,y′>y

4p
x′y′

(x′−1)(y′−1) ,

nx1 =
∑

x′>x,y′>1

4p
x′y′

(x′−1)(y′−1) ,

n11 =
∑

x′>1,y′>1

4p
x′y′

(x′−1)(y′−1) ,

we obtain the distribution P (A) of rectangle area A.
The sum is taken over the integers x′, y′ ≤ L, n11, nx1,
and n1y denote the number of the finally remaining
rectangles with the areas 1×1, x×1, and 1×y, which
are no more divisible. Note that the unknown pLL

disappears by the numerator and the denominator in
all of P (1) = n11/N and P (x) = (nx1+n1x)/N , where
N = n11+

∑

x′′>1 nx′′1+
∑

y′′>1 n1y′′ denotes the total
number of the divided rectangle faces.

Figure 3 shows the distribution of areas with width
one for L = 10, 20, 50, 100, 200, and 400 from left to
right. Our solution denoted by lines is almost com-
pletely fitting with the actual distribution denoted by
marks. In particular, a part of linear tail becomes
longer, as L is larger. This phenomenon is similar to
that in the fragment-size and -mass of glass [1][2], in
which the distribution changes from a lognormal to a
power-low-like according to low and high impacts.

3.2. Continuous Approximation

In order to analyze the distribution of areas for a
large L, we approximate the process to be divisible
at any positions on two edges of a rectangle, by ig-
noring the restriction to the segments on a L × L
square lattice. For l = 1, 2, . . . until the maximum
layer at a given time, the mixture distribution of pl

and g2l(log A), which denote the frequencies of layer l
and of area A in the layer l, are considered. We derive
these frequencies separately.

First, we derive the distribution pl
def
= nl/N of lay-

ers. As shown in [9] for the number nl of faces in
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Figure 3: Distribution of areas with width one in the
extreme rectangles generated from the initial L × L
square. The marks titled “Markov” show the aver-
aged results by 100 samples of the actual divisions of
rectangles and the lines titled “Sol” show the solution
for Eq(2).

the l-th layer, the averaging behavior of difference

∆nl
def
= nl(t + 1) − nl(t) can be written to

∆nl = 3(t + 1)pl(t + 1) − 3tpl(t),
= 3t[pl(t + 1) − pl(t)] + 3pl(t + 1).

Using pl(t + 1) ≈ pl(t), we have

pl(t + 1) − pl(t) = −
4

3t
{pl(t) − pl−1(t)}, (3)

where p0 ≡ 0 is assumed for convenience.
We also derive the following expression [9] by using

a model in interacting infinite particle system,

dnl/dτ = 4nl−1 − nl, l ≥ 2,
dn1/dτ = −n1.

The solution is

nl =
(4τ)l−1

(l − 1)!
e−τ , N (τ) = e3τ ,

pl =
(4τ)l−1

(l − 1)!
e−4τ , (4)

where τ has a logarithmic time scale from the relation
1 + 3t = e3τ of the total number of faces. Note that
the solutions of Eq.(4) coincide with that of Eq.(3)
asymptotically after a huge time [9].

Second, we consider a rectangle face at the l-th layer
generated after some steps. Remember that the num-
ber l is defined by the division’s depth. The area Sl is
given by the product of shrinking rates 0 < Xi, Yi < 1,
i = 1, 2, . . . , l, for two edges of rectangle,

Sl = Πl
i=1XiYiL

2,

where Xi and Yi is rational numbers, and Sl is a pos-
itive integer in the division process, strictly speaking.

As an approximation for a large L, we assume that
the random variables Xi and Yi follow a (0, 1) uni-

form distribution. Then we define a variable x
def
=

− log(Sl/L2) = −
∑

i(log Xi + log Yi), x ≥ 0 ⇔ L2 ≥
Sl, the probability of x follows a gamma distribution

g2l(x) = e−x x2l−1

(2l − 1)!
. (5)

4. Numerical simulation results

We investigate the distributions decomposed into
the approximative pl and g2l, and discuss the condi-
tion for a good fitting to each of components in the
actual distributions for the divisions of rectangles.

Figure 4 shows the distribution pl of layers at time
steps t = 50, 500, and 5000. By the effect of width
one, there exist a gap between the solution of dif-
ference equation(3) denoted by open marks and the
actual distribution denoted by lines, although these
distributions almost coincide in the MSQ networks
based on a self-similar tilling [9]. The gap becomes
slightly larger as L is smaller and t is larger, because
the effect tends to appear in more coarse-grained divi-
sions and a deeper layer. The Poisson distribution of
Eq.(4) denoted by closed marks has a slightly larger
gap than the solution of difference equation(3) denoted
by closed marks in Fig. 4 and even in the MSQ net-
works. Figure 5 shows the cumulative distribution of
x = log(L2/A) restricted in the l-th layer. We chose
the most observable layer l = 5, 8, 11, and 14, which
correspond to the peaks of pl at t = 50, 500, 5000, and
50000, respectively. Because the most observable layer
is dominant in the mixture distribution

∑

l plg2l. The
effect of width one tends to appear as t is larger as
shown in more right curves.

Between our approximation
∑

l plg2l by Eq.(3) and
the the actual distribution of areas, we obtain a good
fitting for L = 108 in Fig. 6(a) but remark a small gap
for L = 103 in Fig. 6(b) The slope of −1 guided by the
segment correspond to the exponents −1.89 ∼ −2 of
the frequency distributions for fragment-mass of glass
[1] and areas enclosed by the city roads [3], because of
the integral in the cumulative distribution.

5. Conclusion

We have considered a spatial network construction
based on random divisions of rectangles for under-
standing the fundamental generation mechanism of
the lognormal and power-law distributions of areas,
which are commonly observed in fragments of glass,
city roads, and cracking patterns. We have derived the
exact solution for the extreme rectangles with width
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Figure 4: Distributions pl of layers at time steps
t = 50, 500, and 5000 from left to right. The black
solid and green dashed lines correspond to the aver-
aged result by 100 samples of the actual divisions of
rectangles for L = 108 and L = 105, respectively. The
open and closed marks correspond to the solution of
Eq.(3) and Poisson distribution in Eq.(4).

one on a combinatorial analysis, and also its continu-
ous approximation for a large size. Simulation results
show a good fitting of our approximation with the ac-
tual distribution of areas, especially for a large L in
fine-grained divisions and at a small time t.
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