O

2016 International Symposium on Nonlinear Theory and Its Applications,
NOLTAZ2016, Y ugawara, Japan, November 27th-30th, 2016

Piecewise-linear particle swarm optimizer networks

Tomoyuki Sasaki™, Hidehiro Nakano®, Arata Miyauchi’ and Akira Taguchi’

tDepartment of Computer Science, Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo, 158-8557, Japan
tResearch Fellow of Japan Society for the Promotion of Science Email: sasaki@ic.cs.tcu.ac.jp

Abstract—Piecewise-linear particle swarm optimizer
(PPSO) is one of the deterministic metaheuristics algo-
rithms. In order to solve a large scale optimization prob-
lems, a large number of PPSO swarms are required. How-
ever, a parallel computing method for PPSO swarms has
not been studied. In this paper, we propose a model of
networking PPSO (PPSON) for parallel computing. The
effectiveness of PPSON is confirmed by numerical simula-
tions.

1. Introduction

Particle swarm optimizer (PSO) [1] which has been de-
veloped by Kennedy and Eberhart in 1995 is one of the
population-based stochastic algorithms. PSO mimics so-
cial behaviors of creatures such as birds flocking and fish
schooling. These creatures are represented by particles
as solution candidates, which search a multi dimensional
search space and find feasible solutions. PSO has follow-
ing advantages of: (1) relatively few control parameters;
(2) that it is easy to implement PSO to applications; and
(3) quick convergence characteristics. Therefore, PSO is
applied to various applications.

In order to find good feasible solutions for large scale
optimization problems, it is required that many particles
search a search space. However, calculation costs are in-
creased in proportion to the number of particles. The cal-
culation costs of particles can be distributed by using mul-
tiple PSO circuits in parallel, which calculate the behavior
of each particle in the original PSO [2]; however, the PSO
circuit has random number generators and multiple floating
point multipliers, because the original PSO particle has the
stochastic factors. As such, the circuit amount of the orig-
inal PSO becomes large, and it is hard to implement large
number of the circuits on hardware. Therefore, decreasing
the circuit amount is required.

In our previous study, piecewise-linear particle swarm
optimizer (PPSO) [3] which is one of the deterministic
PSOs has been proposed. PPSO particle has two dynam-
ics, which are the convergence and the divergence modes,
and searches a search space by switching both dynamics.
The solving performances of PPSO are substantially same
as those of the original PSO. Furthermore, since PPSO does
not have stochastic factors, it can be realized that the size
of a PPSO circuit is smaller than that of the PSO circuit [2].
In order to solve large scale optimization problems, a large
number of PPSO circuits is required. However, a parallel

computing method of PPSO circuits has not been studied.

PSO Network (PSON) [4], which is one of the paral-
lel computing methods for PSO, has been proposed. In
PSON, a population is divided into multiple sub-PSOs, and
each sub-PSO is connected to neighbor sub-PSOs via net-
work structure. Each sub-PSO searches a search space in-
dependently, and communicates own best solution to the
neighbor sub-PSOs. When each sub-PSO is assigned by
single processor, evaluation costs of the population can be
distributed. Furthermore, PSON has better solving perfor-
mances than the original PSO.

In this paper, we propose a model of networking PPSO
(PPSON) for parallel computing. In PPSON, the concept of
PSON is applied to PPSO; a population of PPSO is divided
into multiple sub-PPSOs, and each sub-PPSO searches a
search space independently. Each sub-PPSO is connected
to neighbor sub-PPSOs which are determined via network
structure, and communicates own best information to the
neighbor sub-PPSOs. The effectiveness of PPSON is in-
vestigated by numerical experiments compared with PSON
and PPSO.

2. Piecewise-linear Particle Swarm Optimizer (PPSO)

[3]

In this section, the basic idea of a piecewise-linear par-
ticle swarm optimizer (PPSO) is explained. The ith parti-
cle has velocity vector v; = (v;1, V2, ..., Vip), position vec-
tor X; = (xj1, X2, ..., Xip), and pb; = (pb;1, pbp, ..., pbip)
which is the personal best solution, and shares gb =
(gb1,8ba,...,gbp) which is the global best solution in a
swarm. D denotes the number of design variables. Fur-
thermore, PPSO particle has convergence and divergence
modes.

The updating rules of the jth component of the ith parti-
cle in PPSO are described by

qgij = (1 -r)pb;j+rgb; (D
Yij = Xij—qij 2
Vi cos@ —sing |[v
ij =0 L
[i] - 6”[sinf cos@ H y?fd] 3)

where r denotes a constant parameter. y;; denotes a relative
position from the equilibrium point g;; to the ith particle’s
position x;;. ¢;; denotes a damping factor, and # denotes a

-534 -

rotation angle. Each particle has two search modes, conver-
gence mode and divergence mode, by switching the damp-
ing factor ¢;;. The switching rule from the convergence
mode to the divergence mode is given by the following.

if v i < 0 and |y < They Q)
0ij = 04
vl‘teW = 0 (5)
Thzel;t — a|yn€w|

where d; > 1 denotes a damping factor in the divergence
mode. Th, denotes a switching threshold in the conver-
gence mode, which is updated at the end of the convergence
mode. @ denotes a scaling parameter of Th,.

On the other hand, the switching rule from the diver-
gence mode to the convergence mode is given by the fol-
lowing.

if V4 VI < 0 and Y]] > Thyy; ©)
5,'j =0
VI = 0 ™
THY = Thajj + B(Thei; = Tha))

where 0 < ¢, < 1 denotes a damping factor in the con-
vergence mode. Th, denotes a switching threshold in the
divergence mode, which is updated at the end of the diver-
gence mode. 8 denotes a scaling parameter of Th,.

The procedures of PPSO algorithm for minimizing ob-
jective function f(x) are explained bellow.

Step1: Initialization
Set the maximum iterations t,,,, and the total number
of particles N. For all i, x; and v; are initialized at
random. Let ¢ = 0.

Step2: Update the best solutions
For all i, evaluate the fitness value of the ith particle
and update pb! by the following equation.

= o e O
Then, update gb’ by the following equations.

k = argminf(pb)))

gbh’ = plbﬁc 10)

Step3: Update velocity and position vectors
For all i, the velocity and position vectors of the ith
particle are updated by Eqgs. (3) ~ (7).

Step4: Judgment of termination
t =t+ 1. Then, if t # £,,,4x, go to Step 2.

The idea of PPSO is very simple and it is easy to imple-
ment PPSO on digital or analog circuit. As PPSO is imple-
mented on an analog circuit, it can be realized by nonlinear
resistor, capacitor, inductor and voltage sources.

PSO = =

Particle=

(a) DBG =2 (b) DBG =3

Figure 1: Examples of PSON

3. Networks of PSOs and PPSOs

3.1. PSO Networks (PSON) [4]

PSON is one of the sub-swarm PSO methods. In PSON,
a population is divided into multiple sub-PSOs. Each sub-
PSO is connected to neighbor sub-PSOs which are deter-
mined by network structure. The gth sub-PSO searches a
search space independently, and communicates the own lo-
cal best solution Ib, = (Ib,1,1b, >, ..., b, p) among neigh-
bor sub-PSOs. The gth sub-PSO has the group local best
solution gl, = (g1, 82, ..., 8ly,p) among the neighbor
sub-PSOs. Particles update velocity and position by refer-
ring to pb, Ib and gl. Updating rules of the jth component
of the ith particle’s information in the gth sub-PSO are de-
scribed by the following equations.

vt+l _ wv

i = Xy;;) + cara(lby

x;’i ;) (1D
lelj = Xgt v’gilj +e3ra(gly ;= X)) (12)
The network topology of PSON is characterized by DBG,
which denotes the degree of connection between sub-PSOs.
Figure 1 shows examples of PSON. The number of sub-
PSOs is 4 and the number of particles of each sub-PSO is
6 in these examples. In (a), each sub-PSO is connected to
two neighbor sub-PSOs (Ring topology), while in (b), to
all other sub-PSOs (Fully connected topology). In PSON,
even if one sub-PSO converges to a local optimum solution,
the sub-PSO can escape from the local optimum solution
by referring to gl. Furthermore, parallel computing can be
realized by assigning single processor to each sub-PSO.

3.2. PPSO Network (PPSON)

In this section, we propose PPSO Network (PPSON).
The networking method of PSON is applied to PPSO. A
population of PPSO is divided into multiple sub-PPSOs
which have the own best solution 1b and group local best
solution gl, and each sub-PPSO is connected to neighbor
sub-PPSOs. Each sub-PPSO searches a search space inde-
pendently, and communicates own lb to the neighbor sub-
PPSOs. In PPSON, there are cases where sub-PPSOs do
not converge to gl if an equilibrium point q is set by the
gravity of pb, Ib and gl. Because the information of gl in-
volves the information of lb, an equilibrium point of each
sub-PPSO is defined as follows.

qij = (1 = r)pb;; + rgl; (13)

-535-

Table 1: Simulation settings
PPSON PSON PPSO

No. of Groups (G) 10 1
No. of Particles (N) 5 50
DBG 2,9 -
Dimension (D) 50
Iterations (#,4x) 20000
Trials 100

where r denotes a constant parameter.
The procedures of PPSON algorithm for minimizing ob-
jective function f(x) are explained bellow.

Step 1: Initialization
Set the maximum iterations #,,,, the total number of
sub-PPSOs G, and the total number of particles N for
each sub-PPSO. Let + = 0. For all i, X? and V? are
initialized at random, and pb? is initialized by X?. For
all g, lbg are initialized by the best pb0 in PPSO,, and
gl is initialized by IbY.

Step 2: Update velocity and position vectors
For all i, the velocity and position vectors of the ith
particle are updated by Eqgs. (3) ~ (7).

Step 3: Update the best solutions
For all g, PPSQ, is evaluated. For all i, the ith particle
in PPSO, is evaluated, and pb,; is updated. Then, Ibj,
is updated by the best pby,.

Step 4: Communication for each sub-PPSOs
Perform synchronization of all sub-PPSOs at regular
iterations which are decided by a constant parame-
ter Period, and each sub-PPSO sends the own lb to
neighbor sub-PPSOs. The updating rules of the gth
sub-PPSO for gl, are described by the following equa-

tions.
k = arg minf(Ib) (14)
Jjen(g)
g, = b (15)

where n(g) denotes the gth sub-PPSQO’s neighbor sub-
PPSOs.

Step 5: Judgment of termination
t =t+ 1. Then, if t # t,,4y, g0 to Step 2.

4. Numerical experiments

In order to confirm effectiveness of PPSON, PPSON
is compared with PSON and PPSO. Table 1 and Table 2
show the simulation conditions and benchmark functions of
which the optimal solution is 0, respectively. We adopt the
combination of parameters which leads to the best result,

Table 2: Benchmark functions

f Landscape Range
S phere Separable unimodal [-5.12,5.12]
Rosenbrock Non-separable unimodal [-2.048,2.048]
Ridge Non-separable unimodal [-64,64]
Rastrigin Separable multimodal [-5.12,5.12]
Schwefel Separable multimodal [-512,512]
Ackley Separable multimodal [-32,32]
Griewank Non-separable multimodal [-600,600]
Schaffer Non-separable multimodal [-100,100]

shown in Table 3. In PPSON and PPSO, we set 6. = 0.65,
04 = 1.75, @ = 1.0, B = 0.05, and § = 41°. Initial Thy
is a maximum range of each benchmark function, because
particles should search a search space globally in an initial
search stage. These parameter conditions realize that each
particle can converge to the equilibrium point.

Table 4 shows the simulation results. In Table 4, “Mean”
denotes average fitness value, and “SD” denotes the stan-
dard deviation. As shown in Table 4, the solving perfor-
mances of PPSON are better than those of the others for
multimodal functions. While, in non-separable unimodal
functions, PSON has better solving performances than PP-
SON, because PSON has better local search ability than
PPSON. Since each sub-PPSO can search a better solu-
tion by communicating to neighbor sub-PPSOs, the solv-
ing performances of PPSON are improved more than those
of PPSO. In addition, when each sub-PPSO is assigned by
single processor, high parallelism can be realized. As such,
the networking method for PPSO can realize that the solv-
ing performances are improved and the calculation costs
are distributed. The solving performances of PPSON for
fully connected topology (DBG = 9) are better than for
ring type topology (DBG = 2). Therefore, each sub-PPSO
should refer to the best information in all sub-PPSOs. In
addition, r should be set suitable value for problems.

5. Conclusion

In this paper, we proposed the model of networking
PPSO for parallel computing. PPSO was applied to the
concept of PSON, and the solving performances of PPSON
were compared with PSON and PPSO. The simulation re-
sults showed that PPSON has better solving performances
than PSON and PPSO for multimodal problems. In addi-
tion, when each sub-PPSO is assigned by single processor,
high parallelism can be realized. Therefore, it was clear
that PPSON is effective for parallel computing.

In our future works, we would like to implement PPSON
algorithm on digital or analog circuit to solve engineering
optimization problems.

- 536 -

Table 3: Parameter settings for each method

f PPSON(DBG =2) PPSON(DBG =9) PSON(DBG =2) PSON(DBG =9) PPSO
S phere r=10.95 r=20.95 w=07,¢1=15 w=07,¢1=15 r=095
Period = 10 Period = 10 c=150c=05 ¢=15¢=05 -
Rosenbrock r=0.85 r=0.65 w=07,¢1=10 w=09,¢,=05 r=0.50
Period = 10 Period = 20 c=10,c5=05 ¢=1.0,¢c3=0.5 -
Ridge r=20.50 r=20.95 w=07,¢1=15 w=07,¢,=05 r=0.75
Period = 10 Period = 10 c=05c3=15 ¢=15,¢3=1.5 -
Rastrigin r=20.95 r=20.95 w=07,¢=10 w=05,¢1=15 r=0.95
Period = 10 Period = 20 c2=15,¢35=05 ¢,=15,¢5=0.5 -
Schwefel r=10.95 r=20.95 w=09,¢=05 w=09,¢,=05 r=0.95
Period = 10 Period = 20 c=05c3=10 ¢ =10,¢c3=0.5 -
Ackley r=0.95 r=20.95 w=07,¢,=10 w=05,¢=15 r=0.85
Period = 10 Period = 20 c=15c3=15 ¢¢=15,¢3=1.5 -
Griewank r=0.45 r=20.35 w=07,¢c1=15 w=07,¢,=10 r=0.85
Period = 10 Period = 20 c=156=05 c¢=15,¢3=1.5 -
Schaf fer r=10.95 r=20.95 w=07,¢,=10 w=07,¢1=15 r=095
Period = 10 Period = 20 c=150c=10 c¢c2=15¢3=0.5 -
Table 4: Simulation results
f PPSON(DBG =2) PPSON(DBG =9) PSON(DBG =2) PSON(DBG =9) PPSO
S phere Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
SD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rosenbrock Mean 4.60E+01 4.59E+01 3.67E-01 5.18E-01 4.67E+01
SD 6.28E-01 8.63E-01 1.14E+00 1.34E+00 9.87E-01
Ridge Mean 1.54E+02 5.52E+01 0.00E+00 0.00E+00 6.88E+02
SD 4.62E+01 3.32E+01 0.00E+00 0.00E+00 3.40E+02
Rastrigin ~ Mean 5.97E-02 0.00E+00 8.69E+01 7.89E+01 6.59E+00
SD 2.36E-01 0.00E+00 1.92E+01 1.81E+01 4.20E+00
Schwefel Mean 1.09E+03 1.02E+03 7.41E+03 6.99E+03 1.56E+03
SD 4.16E+02 4.92E+02 6.66E+02 8.35E+02 4.82E+02
Ackley Mean 0.00E+00 0.00E+00 3.21E-02 5.17E-02 7.00E-05
SD 0.00E+00 0.00E+00 1.83E-01 2.54E-01 4.30E-04
Griewank Mean 4.59E-03 4.29E-03 2.54E-03 8.73E-03 7.15E-03
SD 7.22E-03 6.81E-03 6.55E-003 1.24E-02 1.01E-02
Schaffer Mean 6.75E-01 4.10E-01 5.93E+01 7.64E+01 1.93E+01
SD 1.16E+00 9.75E-01 4.10E+01 3.34E+01 1.38E+01
Acknowledgments system for particle swarm optimizers,” Proc. NOLTA,

This work was supported by JSPS Grant-in-Aid for JSPS
Fellows Grant Number JP16J11745.

References

(3]

(4]

[1] J. Kennedy and R. Eberhart, “Particle swarm opti-
mization,” Proc. IEEE Int. Conf. Neural Networks, pp.
1942-1948, 1995.

[2] H. Nakano and A. Miyauchi, “Design of a processor

- 537 -

pp. 606-609, 2015.

T. Sasaki, H. Nakano, A. Miyauchi and A. Taguchi,
“Analysis for basic dynamics and performances of
piecewise particle swarm optimizers,” Proc. IEEE

SMC, 2016.

T. Sasaki, H. Nakano, A. Miyauchi and A. Taguchi,
“Improvement of the solving performance by the net-
working of particle swarm optimization,” IEIEC Trans.
Fundamentals, vol. E98-A, no. 8, pp. 1777-1786,

2015.

