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Abstract– Nonlinear 1-D electric transmission lines 

have long been used to study solitons and intrinsic 

localized modes (ILMs) with the focus mainly on 

nonlinear capacitors since they correspond to nonlinear 

potential energy terms in the corresponding mechanical 

systems. Here, we study a saturable inductor in an 

otherwise linear transmission line. Our simulations show 

ILM current waveforms strongly distorted from a 

sinusoidal time dependence. The well known rotating 

wave approximation fails to predict such an ILM; however, 

including the fundamental and the third harmonic of the 

ILM current produces results in good agreement with 

simulations over a restricted amplitude region. 

 

1.  Introduction 

Fundamental studies focusing on a localized nonlinear 

excitation with width comparable to the lattice constant of 

a lumped nonlinear electrical transmission line have 

appeared in the last decade[1-4]. To date all of these 

intrinsic local mode (ILM) systems have made use of 

nonlinear capacitors to produce intersite nonlinear 

coupling between the linear inductor lattice sites. In the 

asymptotic strongly localized limit the excitation extends 

over three lattice cells. 

In this report we describe a different kind of ILM 

associated with nonlinear inductors equally spaced in an 

otherwise linear electrical transmission line. In an earlier 

work, we considered a transmission line with a flux 

dependent inductance, where the rotating wave 

approximation (RWA) could be used. [5] Here a 1-D 

electric lattice with linear intersite capacitance coupling 

plus a current dependent inductance is the starting point. 

Our results demonstrate that an RWA that makes use of 

only the fundamental frequency is not sufficient to 

provide a realistic current ILM since strong harmonics 

appear in the equations of motion. Including these 

harmonic contributions shows that in the asymptotic 

strongly localized limit the excitation can extend over a 

single lattice cell. 

 

2.  Inductor model, circuit and equations of motion 

A simple nonlinear inductor model with no hysteresis 

that describes saturation of the total flux   with respect 

to the current I is  
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 is the linear inductance and   is the nonlinear 

parameter. Figure 1 illustrates this dependence of the flux 

on the current. Also shown is the corresponding nonlinear 
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which decreases with increasing current. 

 

 
 

 The transmission line under consideration is shown in 

Fig. 2. Because for the simulations we are interested in 

exciting the plane wave zone boundary mode to produce 

an ILM above the plane wave spectrum the transmission 

line is coupled to a set of drivers with opposite phase. 

 In the absence of the driver and the resistance the 

equations of motion of the current in Fig. 2 can be written 

as 
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Fig. 1. (a) Current dependence of the total flux   

through the inductor. (b) The nonlinear inductor ( )L I  

for the model describe by Eq. (1). 
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where the relative currents are described by 

1 1n n nJ I I    , 
1n n nJ I I    and L  is given by Eq. (2). 

Eq. (3) is readily transformed into 

       (4) 

where 
0

4
m

L C
   is the maximum frequency of the 

linear dispersion curve  2 22 1 cosm k   . Equation (4) 

is similar to that for a spring-mass transmission line 

system with an amplitude dependent mass. The 

corresponding mass would become smaller with 

increasing amplitude. 

 

 
 

3.  Driven-damped simulations 

 Simulations using a driven damped lattice were 

performed to investigate the ILM properties. Damping is 

caused by the resistance R in Fig. 2. The circuit is driven 

by an oscillator via coupling capacitors dC  as shown. 

Because the nonlinearity in Eq. (4) is positive, we expect 

the generation of an ILM to commence at the zone 

boundary where the normal plane wave mode frequency is 

largest. The equation of motion now becomes 

 ,       (5) 

where last two terms are the damping and the driver, 

respectively.  

 The resulting stationary ILM is shown in Fig. 3. Figure 

3(a) displays the time dependence of the ILM, and Fig. 

3(b) shows its spatial pattern. The shape is appropriate for 

an odd symmetry mode. The driven-damped simulation of 

the frequency squared versus the amplitude squared is 

summarized by the dashed curve in Fig. 4, indicating that 

the mode frequency is nearly proportional to the 

amplitude.  
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Fig. 2 Circuit diagram for a nonlinear inductor 

transmission line with driver lines. The transmission 

line is composed from the nonlinear inductors (L) and 

linear capacitors (C). R=inductor resistance. The 

transmission line is excited by a set of lines with 

opposite phase, via coupling capacitor 
dC . 
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Fig. 3(a) Simulated stationary ILM at frequency 

1.025 f
m

, where / 2m mf   . (b) Real space profile 

of the stationary odd symmetry ILM in panel (a). 
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Fig. 4. Comparison of ILM simulations with a damped 

driver and analysis based on the RWA approximation. 

Square of frequency is shown as a function of 2A . 

Analysis including the fundamental and 3rd-harmonic 

shows good agreement with the simulated results in 

the low amplitude region 2 0.4A  . 
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4.  Testing the rotating wave approximation  

 For the first method of analysis to compare with the 

simulation results we used the RWA. We assume 

sinusoidal time-dependence of the current,  

cosn nI A t    (6) 

and then apply the RWA to Eq. (4) to obtain the following 

algebraic equations 
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This set of nonlinear equations is solved using Powell's 

hybrid method in MINPACK software. The dependence of 

the ILM frequency on amplitude is represented by the 

highest frequency curve shown in Fig. 4. The squared 

frequency of the ILM increases linearly with 2A  but 

with a larger slope than does the driven-damped 

simulation (dashed curve).  

 

 
 

 The reason for the difference becomes obvious when 

one examines the time dependence of the ILM current as 

obtained from the driven-damped simulations. The time 

dependence of the current shown in Fig. 5 is very different 

from that given by Eq. (6).  

 The next step in analytic complexity is to add a third 

harmonic term to the ILM description. The new 

approximation becomes  

cos cos3n n nI A t B t     . (8) 

The new coefficients for the fundamental and 3rd 

harmonic signals are now determined from Eq. (4) in a 

way similar to the RWA method. The term that invalidates 

the RWA is the first term of right hand side of Eq. (9): 

. (9) 

If this term were absent, the usual RWA would work well. 

To proceed we expand the denominator in Eq. (9) up to 

4th order in current so that 

 .   (10) 

All terms in Eq. (10) are calculated using Eq. (8). 

Although tedious the calculation is straightforward. An 

example is given in Eq. (11).  

   (11) 

The result is 
1 3cos cos3 0C t C t   where 

nC are total 

coefficient of n-th harmonic signal. By setting each 

coefficient equal to zero, we obtain the following 

algebraic equations: 
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Fig. 5. Time dependence of the simulated ILM 

current at 1.25 mf . It is time periodic but distorted 

from a sinusoidal curve by higher harmonics.  
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Solving the two set of equations for N lattice points, we 

obtain the squared frequency as a function of 2A  as 

shown by the lowest frequency trace in Fig. 4. Good 

agreement with the simulations does occur but only below 
2 0.4A  . 

 

5.  Discussion and Summary 

 The source of the periodic sharp peaking of the ILM 

current with time is the nonlinear inductance. That is, the 

inductance becomes the smallest at the current peak. 

Although the slope of the current is zero at the peak, it 

changes more rapidly near the peak than for the constant 

inductance case and this feature produces the narrowing of 

the current peak shown in Fig. 5. 

 Above an amplitude of 2 0.4A  , the rate of change 

of the inductance becomes larger as shown in Fig. 1(b). 

This property introduces higher harmonics than used in Eq. 

(7). For this reason, our second attempt at an analytical 

determination of the ILM properties failed for large 

amplitudes. Thus the general features of an ILM 

associated with current saturable inductors in a 1D 

transmission line are threefold: (1) the RWA can not be 

applied to obtain an analytical solution, (2) in the 

asymptotic limit the ILM excitation becomes localized on 

a single lattice cell and (3) this ILM contains many 

harmonics of the fundamental ILM frequency. 
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