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Abstract—A β-converter is an analog-to-digital (A/D)
encoder, that outputs truncated sequence ofβ expansion of
an input valuex ∈ [0,1). β-converter has been proved to
be robust to the fluctuation of the threshold value in quan-
tizer. However, it remains an unsolved issue to give an ac-
curate estimation of theβ value in a pipelineβ encoder. In
this paper, we propose a new method estimatingβ by us-
ing β-map and the accuracy is also evaluated by numerical
simulations.

1. Introduction

An A/D converter converts the continuous physical value
to digital number and it is implemented in various of elec-
tronic equipment. Due to the large improvement in semi-
conductor microfabrication technology during recent years,
A/D converters also tend to be more compact and hav-
ing lower power consumption. Therefore circuit element’s
value and threshold voltage play important roles and it is
getting difficult to make sure of the conversion accuracy.
For choosing an A/D conversion architecture, it is also im-
portant to concern about its electricity consumption, accu-
racy, conversion rate. Nowadays, i)Nyquist rate converter
and ii)over sampled converter are the two main types of
A/D converters which are commonly used.

Nyquist rate converter cuts off the signal whose frequency
is over W by analog filter and samples the signal in the
frequency over 2W. After that, these sampled-value are
converted into binary digits by the A/D converter. Among
the Nyquist rate converter, the most popular one is natu-
ral weighted binary encoder also called PCM (Pulse Code
Modulation) which gains the dyadic expansion of an in-
put valuex ∈ [0,1]. Although PCM is known to be easily
calculated and achieves a precision of orderO(2−N)(N is
bitrate), it makes error when the threshold voltage is fluc-
tuated. On the other hand,Σ∆ modulation is the typical
over sampled converter. It has a self-correction property to
the fluctuation of threshold by over-sampling in low quan-
tization accuracy.Σ∆ modulation is robust to the electric
circuit elements and this property is the one that Nyquist
rate converter does not own. Because of this robustness,
we preferΣ∆ modulation to PCM while using imperfect
quantizer, althoughΣ∆ modulation owns slow conversion
rate (achieves precision of orderO(N−1)).
β-encoder is a new type of Nyquist rate converter pro-

posed by Daubechies et al. in 2002 [1]. The most impor-

tant fact about theβ-encoder is that it is robust to the fluctu-
ated quantizer while achieving a precision of orderO(β−N).
β-encoder convert input-analog-signalx ∈ [0,1) to digital
bits by the expression

x =
∞∑

n=1

bnβ
−n, (1)

whereβ is a real number satisfies the inequality 1< β < 2
andbn ∈ {0,1}. β encoders have a look-up table (LUT) that
memorizes the binary expansion ofβ−n (n = 1,2, .., . . .N).
Such a LUT is used to convert the beta expansion coeffi-
cient {bn}s of x to binary expressoin ofx. β-encoder over-
comes the disadvantage of both PCM andΣ∆ modulation
and it owns the potential to carry out A/D conversion in
both high accuracy and speed.

When we mention about anβ-encoder, there are two types
of them. One is cyclic type which uses only oneβ-encoder
to provide output bits and the other is pipelineβ-encoder
using plurality ofβ-encoder to provide outputs from each
encoder. In order to apply faster analog digital conversion,
it is important to construct pipelineβ-encoder. As we can
observed from expression (1), we need to know the exact
β-value to restore the input valuex. We propose a new
method for estimatingβ-value in pipelineβ-encoder which
usesβ-map. Meanwhile, we also show the result of our
numerical experiment estimating theβ-value using the pro-
posed method.

2. β-encoder

2.1. cyclic-β-encoder

A β-encoder is composed of aβ-times(1< β < 2) am-
plifier and a quantizer with threshold valueν. β-encoder is
known to be much more robust to the fluctuation of circuit
elements than PCM. Moreover,β-encoder also could con-
vert in higher rate thanΣ∆ converter, which means it can
convert in both high rate and accuracy. Figure 2 shows a
block diagram ofβ-encoder and whenβ = 2 it reduces to
the PCM.

In aβ-encoder, an input valuex ∈ [0,1) can be expanded
into x = (β − 1)

∑n=∞
n=1 bnβ

−n,bn ∈ {0,1}. The expansion
coefficients{bn} can be obtained as follows: we define a
β-expansion map as

Cβ(x) =

{
βx, x < ν/β,
βx+ 1− β, x ≥ ν/β. (2)
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Figure 1: cyclic-β-encoder(x0 = x, xn = 0(n > 0))

whereν ∈ (β−1, 1) is the threshold of the quantizer. Define
a quantizer as

Qν(x) =

{
0, x < ν,
1, x ≥ ν. (3)

Thenbn is given by following expressions:

{
u1 = βx,b1 = Qν(u1), n = 0
un+1 = β(un − bn(β − 1)), bn+1 = Qν(un+1), n > 0

(4)
When we use a quantizer with errorϵ in the threshold

valueν, we can still carry out A/D conversion in a precision
of orderO(β−N) if the threshold value remains in (β− 1,1),
which means (ν ± ϵ) ∈ (β − 1,1). This characteristic is the
one that PCM does not own, and so thatβ-encoder is said
to be robust to the fluctuated quantizer.

2.2. β-estimation using Daubechies et al.’s method

In this section, aβ-estimation method proposed by
Daubechies et al. [2] is explained. It remains an important
issue to know the exact value ofβ in order to conduct high
accuracy A/D conversion usingβ encoder. However, we
cannot make exactβ-converter because of the fluctuation
of the circuit elements. Therefore it remains an important
issue to estimateβ-value in high accuracy after choosing
a β times amplifier with errors (Although it seems there
are twoβ-value remain estimating in Fig. 1, theβ-value in
two amplifier gain same value while using MDAC circuit
[5]. So only oneβ-value remain estimating). In terms of
Daubechies et al.’sβ estimating method, two input values
x ∈ (0,1) and 1− x ∈ (0,1) are used to produceL bits ofβ-
outputs{bi}Li=1 and{ci}Li=1. Definingγ = β−1, C = 1+ ν + ϵ,
k0 = log(1−γ

2 )/ logγ, C′ = max {2C,2C/(k0γ
(k0−1))}, ϵ the

error of threshold valueν, then quantization error will sat-
isfy the inequality

0 ≤ x− (1/γ − 1)
L∑

i=1

biγ
i ≤ C′γL, (5)

whereγ = β−1. Meanwhile the quantization error of input
value 1− x also satisfies

0 ≤ 1− x− (1/γ − 1)
L∑

i=1

ciγ
i ≤ C′γL. (6)

Figure 2:FL(γ) andGL(γ)

From the Eqs. (5) and (6), we have

0 ≤ FL(γ) ≤ GL(γ), (7)

whereFL(γ) = 1−( 1
γ
−1)
∑L

i=1(bi+ci)γi andGL(γ) = 2C′γL.

It can be easily verified thatFL(γ) is a monotone decreas-
ing function ofγ and thatGL(γ) is a monotone increasing
function ofγ. According to these characteristics ofFL(γ)
andGL(γ), we can draw a graph in Fig. 2. From the in-
equality 0≤ FL(γ) ≤ GL(γ), we know that the trueγ is lim-
ited in the regionIL illustrated in Fig. 2. Therefore whenL
is large enough, we could figure out the estimation value of
γ expressed in ˆγ by finding the solution satisfies inequal-
ity(7) with Newton’s method or bisection method. After
that, according to expressionγ = β−1, estimatedβ value
β̂ is calculated. In previous Oda’s research [3], they have
also discovered a method finding the solution of inequal-
ity(7) by gradually enlargingL. This method has a benefit
that total number of calculation is decreased.Theβ̂−ns are
memorized in a LUT. Let the range ofβ be [βmin, βmax],
which are divided into subintervals with equal width∆β.
The LUT memorizeŝβ−ns for all candidateŝβ = βmin+ j∆β
j = 0,1,2....

2.3. Pipelineβ-encoder

Cyclic model and pipeline model are the two main mod-
els of the circuit structure when using Nyquist rate con-
verter. If we assume gettingL bits of output bits, the for-
mer one uses only one quantizer forL times, however, the
latter one usesL pieces of quantizer to get the output bits.
Consequently, the pipeline-model’s circuit area isL times
larger than the cyclic-model’s but it could convert the sig-
nal in L times higher rate than the cyclic-model. We show
the pipelineβ-encoder in Fig. 3. For a pipelineβ-encoder,
let βi be the amplification factor ofi-th β-encoder (see Fig.
3). Then, we have

xi = βi xi−1 − (βi − 1)bi (i = 1,2, 3, ..., L) (8)

By usingβ-expansion in each stage, we can also obtain the
following expression:

xL = βL(βL−1(· · · (β1x0 − (β1 − 1)b1) − (β2 − 1)b2)

- 523 -



Figure 3: Pipelineβ encoder

· · ·) − (βL − 1)bL

=

L∏
i=1

βi x0 −
L∑

i=1

(βi − 1)bi

L∏
j=i+1

β j . (9)

From this expression, we could get the input valuex0 as the
following expression sincexL cannot be known.

x0 =

L∑
i=1

(βi − 1)bi

i∏
j=1

1
β j
+ xL

L∏
i=1

1
βi
. (10)

Therefore, in order to reconstruct the input-valuex0 pre-
cisely frombi , it is necessary to know the exact value of
βi .

3. β-estimation for pipeline-β encoder

In section 2.2, we discussed aboutβ-estimation method
in cyclic β-encoder. However, in the case of pipelineβ-
encoder, we need to estimate pluralβ-value. While us-
ing Daubechies’s method estimatingβ-value, we can only
achieve one inequality meaning impossible to estimate plu-
ral β. So that we need to find out a new method for estimat-
ing theβ-value in pipelineβ-encoder.

In this section, we explain our proposed method for es-
timating β-value for pipeline-β encoder. In the following
arguments, we suppose that:

• β1, β2, ..., βL are unknown (we could only know the
range [βmin, βmax])

• The dispersion ofβ-value tends to be larger in the later
stage, however in this paper we supposed the disper-
sion does not differ in each stage.

• We can obtain output bitsb1, ..., bL

• Input valuex0 cannot be made accurately and we also
cannot getx1, ..., xL−1, xL directly

We update theβ-value from the previously estimated
value to a new one by the steps bellow:

1 We get as much input valuex0 as possible (suppose
K samples ofx0). x(k)

0 means thekth input value for
k = 1, 2, ...,K.

2 Let b(k)
1 ...b

(k)
L represent the output bits for the initial

value x(k)
0 from β-encoder. The valueβ1, . . . , βL′ will

be the targetβ to estimate. We give up estimating
the later (L − L′)βi , and considering their value as
β̄ = (βmin + βmax)/2. (In a practical imprementation,
one can use the nominal value of beta asβ̄. However,
in this simulation, we assume that the nominal value
is given byβ̄ = (βmin + βmax)/2)

3 We estimate theβ in the orderβL′ , βL′−1, ..., β1 (from the
later one to the former one). The estimation procedure
follows the steps below:

4-1 At this stage, we calculate pairs of reconstructed val-
ues (x(k)

i−1, x
(k)
i ) using output bitsb(k)

1 ...b
(k)
L according to

the expressions:

x̂(k)
i−1 =

L∑
n=i

[(β̂n − 1)b(k)
n

n∏
m=i

β−1
m ] (11)

x̂(k)
i =

L∑
n=i+1

[(β̂n−1 − 1)b(k)
n

n∏
m=i+1

β−1
m ] (12)

Note thatβ̂n, the estimated value ofβn, have been al-
ready calculated at this moment forn = i+1, i+2, ..., L.
Although in Eq. (11) it appearŝβi which remain un-
confirmed, we suppose its value asβ̄. Our aim is to
estimate thiŝβi .

Figure 4:β-map of pipeline-β-encoder

4-2 According to Eqs. (8), (11) and (12), we have

x̂(k)
i =

{
βi x̂

(k)
i−1, if x i < θ

βi x̂
(k)
i−1 + 1− βi , if x i ≥ θ

(13)

Then,we can figure out that the point ( ˆxk
i−1, x̂k

i ) lies on
the locus defined by the expression above.θ repre-
sents the unknown threshold value (Fig. 4). We con-
sider the point on the most right side of left branch as
(x̂(k0)

i−1 , x̂(k0)
i ) and consider the point on the most left side
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of the right branch as ( ˆx(k1)
i−1 , x̂(k1)

i ). Then, we suppose
that,

θ =
x̂(k0)

i−1 + x̂(k1)
i−1

2
(14)

β̂i =

x̂
(k0)
i

θ
+

1−x̂
(k1)
i

1−θ
2

(15)

4-3 We update the estimatedβ̂i value according to Eqs.
(14) and (15). Then update ˆx(k)

i−1 again according to
Eq.(10), after that repeat step (4-2). We quit updating
β̂i after repeating a few timesJ. Finally, let i → i − 1
and go back to 4-1 until we finish estimating all theβ.

4. Numerical Results

The accuracy ofβ-value is evaluated by computer sim-
ulation. In the simulation, we repeat the evaluation for
4 times while the number of input valuex0 varies from
105, 106, 107 and the number ofβ-encoder areL′ =
15, L = 30. We suppose the tureβ values are randomly
selected in the rangeβ ∈ [1.69,1.71] according to the uni-
form distribution and start simulation from the initial value
β̄ = 1.7. The performances are evaluated by MSE (Mean
Squared Error).

The simulation results show that the formerβ’s MSE is
getting smaller than the later one. This is because the ac-
curacy is gradually becoming accurate from the laterβ to
the formerβ. And comparing Fig. 5 and Fig. 6, the MSE
is smaller as the input numberK increase. From Fig. 7,
we also know that when the repetition frequency increase,
MSE does not decrease.

5. Conclusion

We proposed a new method estimatingβ-value in
pipelineβ encoder and conducted experiment through com-
puter program. In our experiment, the MSE decrease com-
paring to the original error which implies the availability
of our proposed method. We would like to implement our
method in a electric circuit and verify its performance in
the future work.
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Figure 5: MSE of the firstL β encoder(K = 105)
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Figure 6: MSE of the firstL β encoder(K = 107)
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Figure 7: MSE while repeating estimation for 100 times
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