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Abstract—Beta encoder is an analog-to-digital con-
verter which is robust to the fluctuation of the threshold
voltage in a quantizer. Such a beta encoder is considered as
a good candidate for random number generators (RNGs).
In order to use a beta encoder as a RNG, strong correlation
between consecutive bits must be eliminated. In this paper,
the exclusive-or (EXOR) of outputs from multiple beta en-
coders is used as a random number. We investigated the
statistical property of such a random number.

1. Introduction

Pseudo-random number generation is one of the most
promising application of chaotic phenomenon observed in
electronic circuits. There have been many researches on
random number generator (RNG) using chaotic dynamics.
Among them, RNGs using discrete-time chaotic dynamics
with piecewise linear (PL) maps have attract much atten-
tion. Stojanovski and Kocarev [1] proposed to use a PL
map with two slopes 1< k1 < 2 and 1< k2 < 2. Using
the same PL map as in [1] but withk1 = k2(= k), Addabbo
et al. presented an interesting approach in which the am-
plification factork and a threshold are controlled by utiliz-
ing the observed statistics of the output binary codes [2].
Such a PL map with a slope 1< k < 2 is also used inβ
encoders that is a kind of analog-to-digital (A/D) convert-
ers, where the slope is denoted byβ rather thank. In this
paper, we consider a random number generation using ex-
clusive or (EXOR) of multipleβ encoders. The benefit of
the proposed method over the existing ones [1][2] is that
the proposed method is simple.

A β encoder is an A/D converter, proposed by
Daubechies et al. in 2002 [3]. Aβ encoder aims to ob-
tain β expansion coefficients of input valuex, whereβ
expansion of a real numberx ∈ (0, 1

β−1] is defined by

x = a1/β + a2/β
2 + a3/β

3 + . . ., whereai ∈ {0,1} are the
expansion coefficients andβ is a fixed number in (1,2). Aβ
expansion reduced to binary expansion ifβ = 2. The most
important property ofβ encoder is its robustness to the fluc-
tuation of the threshold voltage value in the quantizer. Such
a property enables us to use coarse precision capacitances,
and low gain operational amplifiers [3]. Then, we can de-
sign aβ encoder extremely easily compared with other an
A/D converter, and realize the miniaturization of a circuit
area.

β

Figure 1: A block diagram of a cyclic-typeβ encoder

If we let aβ encoder output a large number of bits, such
as ten thousand bits for one sample, then its bit sequence
is considered a random number sequence. We observed an
attractor in the hardware circuit [5]. We consider this at-
tractor as a replacement for random physical phenomenon
in the physical RNG. Thus we treat the output of aβ en-
coder as random number. However, a sequence of outputs
of a β encoder has a strong correlation between adjacent
outputs. Therefore we need to make it closer to i.i.d. se-
quence by performing some post-processing.

In this paper, we consider a sequence of EXORs of plural
outputs fromβ encoders as random number sequence [6].
We performed a computer simulation, and evaluate the
statistical properties of the generated random number se-
quences. A strong correlation between adjacent bits was
highly suppressed by using multipleβ encoders.

2. Pulse Code Modulation andβ encoder

Pulse Code Modulation (PCM) is one of the stan-
dard analog-to-digital (A/D) conversion methods, which is
based on binary expansion; the input analog value is con-
verted into its binary expansion and then the binary expan-
sion is expressed by a pulse train of its corresponding dig-
ital code. PCM consists of an amplifier that doubles the
voltage accurately, a comparator that compares the voltage
with the threshold value 1/2, and a subtractor circuit that
reduces the voltage by a reference voltage 1. However, if
the threshold in the comparator fluctuates a little from the
value 1/2, then the output diverges. This observation sug-
gests that we can not convert correctly.

A β encoder is an A/D converter based onβ-expansion,
consisting of an amplifier with an amplification factorβ
and a comparator with a thresholdν. A circuit diagram of
cyclic β encoder is shown in Fig. 1. In aβ encoder, an ana-
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Figure 2:β-expansion map

log input value is converted into its correspondingβ-ary
expansion with finite precision. Let the output binary se-
quence obtained by aβ encoder be{ai}∞i=1, and initial input
value bex = x0 ∈ [0, 1

β−1), then we have

ai = Q[ν](βxi−1), i ≥ 1, (1)

xi = βxi−1 − ai , i ≥ 1, x0 = x, (2)

whereQ[ν](x) is a comparator, defined by

Q[ν](x) =

{
0 0≤ x < ν/β,
1 ν/β ≤ x < 1/(β − 1).

The initial valuex and{ai}∞i=1 satisfy the following relation:

x =

∞∑
i=1

aiβ
−i , (3)

where 1< β < 2 and 1≤ ν ≤ 1
β−1. A β-expansion map

is shown in Fig. 2.β-expansion map is called greedy, cau-
tious, and lazy maps, ifν = 1, ν = β

2(β−1), andν = 1
β−1,

respectively.
Daubechies et al.’s flaky quantizer: Daubechies et al.
have proposed a model of quantizers having fluctuated
threshold values, called a flaky quantizer [4]. A flaky quan-
tizer is characterized by two threshold values,ν0 andν1. If
the voltage is less thanν0, the quantizer outputs 0, if it is
greater thanν1, the quantizer outputs 1, and if it is between
ν0 andν1, we do not know the quantizer outputs 0 or 1. The
output of aβ encoder with flaky quantizer is given by

ai = Qf
[ν0,ν1](βxi−1), i ≥ 1, (4)

xi = βxi−1 − ai , (5)

whereQf
[ν0,ν1](x) is flaky quantizer defined by

Qf
[ν0,ν1](x) =


0 x < ν0,
1 x > ν1,
0 or 1 ν0 ≤ x ≤ ν1.

This Qf
[ν0,ν1] is a model of a quantizer that outputs on in-

correct judgment near the threshold. In the computer sim-
ulation in Section 4, we letQf

[ν0,ν1](x) to take 0 or 1 with
equal probability ifν0 ≤ ν ≤ ν1. We define the map from
xi to xi+1 asCf

β,[ν0,ν1](x). Namely, we define (See Fig. 3.)

Cf
β,[ν0,ν1](x) = βx− Qf

[ν0,ν1](βx). (6)

=0)=

0

=1)=

Figure 3: Aβ-expansion map with flaky quantizer

If the parametersν0, andν1 satisfy 1≤ ν0 ≤ ν1 ≤ 1
β−1 and if

the initial value satisfies 0< x0 <
1
β−1, then the orbitx1, x2,

x3, . . . generated byxi = Cf
β,[ν0,ν1](xi−1) does not diverge.

3. The proposed method

A β encoders can be realized in a very small CMOS cir-
cuit, therefore it is possible to implement multipleβ en-
coders into one chip. Based on this fact, Hirata et al.
have proposed to use EXOR of the outputs from multiple
β encoders to generate a sequence of random binary num-
bers [6]. In this paper, we evaluate the performance of Hi-
rata et al.’s method by using Daubechies’s flaky quantizers.
We introduce the simulation method below.
Fixed threshold model: Firstly, we use quantizers with
fixed thresholds to analyze Hirata et al.’s method. We as-
sume thatK(≥ 1)β encoders with fixed thresholds are used.
Once an analog signal is sampled,L bits ofβ expansion co-
efficients for this sample are obtained. Each of outputs ofβ
encoders are distinguished by adding a superscript(k), such
asa(k)

i . An EXOR operation is performed among the out-
puts ofβ encoders of from 1 toK, which is defined asb(K)

i ,
i.e.,

b(K)
i = a(1)

i ⊕ a(2)
i ⊕ · · · ⊕ a(K)

i , i = 1,2, . . . L. (7)

Parameters forβ encoders are set as follows: Theβ value
is chosen from 1.7, 1.8 and 1.9. The threshold is chosen
from three-values, greedy, cautious, and lazy. Initial value
is randomly selected from [0, 1

β−1] with uniform distribu-
tion. The number of bits isL = 10,000.
Flaky quantizer model: Secondly, we use Daubechies’s
flaky quantizers to analyze Hirata et al.’s method. Each of
outputs ofβ encoders are denoted by ¯a(k)

i . EXOR operation
is performed among the outputs ofβ encoders from 1 toK,
which is defined as̄b(K)

i , i.e.,

b̄(K)
i = ā(1)

i ⊕ ā(2)
i ⊕ · · · ⊕ ā(K)

i , i = 1,2, . . . , L. (8)

The initial valuex(k)
0 is set to be (ν0 + ν1)/2β for all k =

1, . . . ,K. The reason why we choose this number as the
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Figure 4: Autocorrelation function ofb(K)
i for β = 1.7 andL = 10,000.

initial value is as follows: In a hardwareβ encoder, the
common mode voltage is one of the easiest voltages to be
employed, which is modeled as (ν0 + ν1)/2β. If the thresh-
old of the quantizer in fixed, and if we start with the same
initial valuex(k)

0 , then the orbits{x(k)
i } should be the same for

all of k = 1, . . . ,K. However, we employ the flaky quan-
tizer here, so that the orbits{x(k)

i } for eachk are different.
Therefore, we assume the same initial value for allk.

4. Experiment

We consider the two analytical models i.e., fixed thresh-
old and flaky quantizer models, on the random number
generation method using EXOR of outputs of pluralβ en-
coders. The quality of the generated random number is
evaluated by the following quantities: autocorrelation func-
tion, distribution of the sum ofb(K)

i , occurrence frequency
of sequences of block lengthN = 3, . . . , 6, and periodicity.

4.1. Autocorrelation function

Autocorrelation function of a random number sequence
b(K)

i , i = 0,1, . . . , L − 1, is defined by

R(K)(ℓ) =
1
L

L−ℓ−1∑
i=0

b(K)
i b(K)

i+ℓ . (9)

Autocorrelation function ofb̄(K)
i is determined similarly

and denoted bȳR(K)(ℓ). The number ofβ encoders is set to
beK = 1,2,4 in both models. Furthermore, we performed
300 independent trials in each simulations. The autocorre-
lation function forβ = 1.7 is shown in Fig. 4. In this figure,
”greedy” and ”cautious” correspond to the fixed threshold
model and others correspond to the flaky quantizer model.
The ”50% flaky” means that the size of the range [ν0, ν1]

is 50% of the full range [1,1/(β − 1)], while ”flaky quan-
tizer” menas [ν0, ν1] = [1,1/(β−1)]. Autocorrelation func-
tions for the lazy map are the almost the same as that of the
greedy map and thus omitted here.

Fig. 4 shows that the autocorrelation values forK = 1
have strong correlations for the fixed threshold model. The
autocorrelation function is close to the delta function ifK =
4 for the fixed threshold model and ifK ≥ 2 for the flaky
quantizer model.

Interestingly, we found that the autocorrelation function
takes a positive value atl = 1,−1 for β = 1.7, but takes a
negative value atl = 1,−1 for β = 1.8 and 1.9 K = 1 for
the fixed threshold model. If we employ the fixed threshold
model, the autocorrelation function atl = ±1 must take a
negative value for any threshold value. However, the hard-
ware experiment by Tanaka et al. [7] reported the autocor-
relation value takes a positive value atl = ±1. Namely,
the fixed threshold model does not match the result of ex-
periment by Tanaka et al. Using the flaky quantizer model,
we can makēR(K)(ℓ) for K = 1 andl = ±1 to be negative.
Hence, we consider the flaky quantizer model matches the
hardware experiment more than the fixed threshold model.

4.2. Distribution of the sum ofb(K)
i (i = 1, . . . , L)

The sum ofb(K)
i from i = 1 to L is evaluated for both

fixed and flaky quantizer models. For an i.i.d. binary
sequencec1, c2, · · ·, the central-limit theorem states that
ZL = L−1/2∑L

i=1 ci , approaches to a normal distribution as
L goes to infinity. We expect the distribution of the sum
of b(K)

i is close to the normal distribution. We use the vari-
ational distance as an approximate measure. Let two dis-
tributions on a finite setX be P = (p1, p2, . . . , p|X|) and
Q = (q1,q2, . . . ,q|X|). The variational distance between P
and Q is defined byd(P,Q) =

∑|X|
i=1 |pi −qi |. The variational
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Figure 6: Variational distance between the empirical dis-
tribution of the bit pattern and the uniform distribution
β = 1.7, N = 6, andL = 10,000

distance between the sum ofb(K)
i and normal distribution is

shown in Fig. 5. The variational distance was improved
significantly at maximum valueK = 8 in fixed thresh-
old model, andK = 2 in flaky quantizer model. Fig. 5
shows thatK = 8 is needed for greedy or lazyβ expansions
to achieve the same variational distance as flaky quantiz-
ers. The variational distance for cautiousβ expansions is
as good as flaky quantizer model.

4.3. Occurrence frequency of bit patterns for short
block length

We evaluate the number of occurrence of bit patterns
such as (0,0, . . . , 0), (0,0, . . . ,1),. . .,(1,1, . . . ,1) for block
length of N = 3, 4,5 and 6.The number of bits isL =
120,000. The variational distance between the empirical
distribution of the bit patterns and uniform distribution for
N = 6 andβ = 1.7 is shown in Fig. 6. The variational was
improved significantly at maximum valueK = 8 in fixed
threshold model, andK = 2 in flaky quantizer model. Fig.
6 shows that the quality of random numbers for cautious

map is worse than the flaky quantizer. It is obversved that
the performance of 50% flaky quantizer is between those of
the fixed threshold with cautious map and the flaky quan-
tizer.

4.4. Periodicity

We examined periodicity of the generated random num-
bers. We definep ≥ 1 as the periodicity of an orbit{xn}∞n=0
if we find xn = xn+p for somen. When we use multi-
ple β encoders, we definep as the periodicity if we find
(x(1)

n , x
(2)
n , . . . , x

(K)
n ) = (x(1)

n+p, x
(2)
n+p, . . . , x

(K)
n+p) for somen. As

far as we examined to length of sequenceL = 220 we could
not find such an example, and verified that the period of the
generated bits is greater than 220.

5. Conclusion

In this paper, we have evaluated performance of Hirata et
al.’s method by introducing Daubechies et al’s flaky quan-
tizer. In the fixed threshold model, eightβ encoders are
necessary to make the quality of generated sequence close
to that of i.i.d. sequences. On the other hand, in the flaky
quantizer model, twoβ encoders were enough. These re-
sults show that the number ofβ-encoders required to at-
tain a sufficient quality of the random number after taking
EXOR of the plural ofβ encoders is not so large as previ-
ously expected by Hirata et al.’s computer simulation em-
ploying the fixed threshold model.
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