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Abstract—In this paper we analyze the interval algo-
rithm for random number generation proposed by Han and
Hoshi in the case of Markov coin tossings. Using the ex-
pression of real numbers on the interval [0,1), we first es-
tablish an explicit representation of the interval algorithm
with the representation of real numbers on the interval [0,1)
based one number systems. Next, using the expression of
the interval algorithm, we give a rigorous analysis of the
interval algorithm. We discuss the difference between the
expected number of the coin tosses in the interval algorithm
and their upper bound derived by Han and Hoshi and show
that it can be characterized explicitly with the established
expression of the interval algorithm.

1. Introduction

Simulation problems of generating random sequences
from a prescribed information source by using a random
sequence from a given information source are called the
random number generation. In the random number gen-
eration random sequences from a prescribed information
sources are called the target random sequences which we
wish to produce and the random sequence from given infor-
mation sources are called the coin random sequences that
the target random sequences are made from.

There have been several works on the random number
generation in the field of computer science and information
theory. Some interesting relations between random number
generation and information theory have been found in the
papers of Elias [1] and Knuth and Yao [2].

Han and Hoshi [3] studied a variable-to-fixed random
number generation problem. They studied the method of
generating target random sequences of fixed length from
a prescribed information source by using coin random
sequences of variable length from a given information
source. They proposed a simple algorithm called the in-
terval algorithm and obtained results for its performance
analysis. They established an upper bound of the average
length of coin random sequences necessary to create tar-
get random sequences. The derived bound is characterized
with a fraction of two entropies of given and prescribed
sources and is shown to be asymptotically optimal for large
length of output sequences.

In our previous work [4], we studied the performance

analysis of the interval algorithm for random number gen-
eration proposed by Han and Hoshi [3]. In this work we
treated the case where we wish generate a target random
variable by using a coin random sequence from a station-
ary memoryless sources. In this paper we study the per-
formance analysis of the interval algorithm in an extended
case where coin random sequences are from the stationary
Markov information sources.

In [4], we derived explicit results on the performance
analysis of the interval algorithm for random number gen-
eration using an expression of real numbers in the unit
interval [0,1). On the expression of real numbers in the
unit interval, we used a kind of generalized number sys-
tem based on the stochastic structure of the coin random
process. Using the above representation of real numbers
on the interval, we established an explicit expression of the
interval algorithm. In this paper we show that the same re-
sult also holds for the case where the coin random process
is a Markov chain. Using this expression of the algorithm,
we give a rigorous analysis of the interval algorithm. We
discuss the difference between the expected number of the
coin tosses in the interval algorithm and their upper bound
derived by Han and Hoshi and show that it can be char-
acterized explicitly with the established expression of the
interval algorithm.

2. Interval Algorithm for Random Number Genera-
tion

Let X be random variables taking values in a finite set
X △= {0, 1, · · · ,N − 1}. Let pX

△
= {pX(x)}x∈X be a probability

distribution of X. Let {Yt}∞t=1 be a stationary Markov source.
For each t = 1, 2, · · ·, Yt takes values in a finite set Y △

=

{0, 1, · · · ,M − 1}. The stationary Markov source {Yt}∞t=1
is specified with the M × M stochastic matrix denoted by
P = [Pi j], where

Pi j = Pr{Yt+1 = j|Yt = i}, for t = 1, 2, · · · .

We also write Pi j, (i, j)×Y2 as Pi j = pY ( j|i). LetY∗ denote
the set of all finite sequence emitted from the above infor-
mation source. We write a string from information source
as ym

l
△
= yl yl+1 · · · ym ∈ Y∗. If l > m, the string ym

l means
null string denoted by λ. When l = 1, we frequently omit
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the suffix 1 of ym
1 and write ym = y1y2 · · · ym. Let pY (ym

l )
denote the probability of ym

l . Since the information source
is a stationary Markov source, we have

pY (ym
l ) = pY (yl)Pylyl+1 · · · Pym−1ym .

Here {pY (a)}a∈Y is a stationary distribution computed from
P. The probability of the null string λ assumes to be one.

In this paper we deal with the variable to fixed ran-
dom number generation problem of generating target ran-
dom variable X by using the coin random sequence Y1
Y2 · · ·Yi · · · from a stationary Markov information sources
{Yt}∞t=1. A formal definition of the variable to fixed random
number generation problem is the following. Repeated
tosses of the coin random variable Y produces random se-
quence Y1,Y2, · · · from a discrete memoryless source. The
coin toss terminates at some finite time L to generate a
random variable X with a prescribed distribution pX . L
is a random variable specified in terms of a determinis-
tic two valued function such that f (Y i) =‘Continue’ for
1 ≤ i ≤ L − 1 and f (ZL) =‘Stop’. The output X is ex-
pressed as X = ψ(YL) with some deterministic function ψ.

In the above random number generation problem Han
and Hoshi [3] proposed a simple algorithm called interval
algorithm and evaluated its performance. Let I = [0, 1).
Define the cumulative probabilities for pY by

cY (0) △= 0, cY (y) △=
∑
i<y

pY (i), 1 ≤ y ≤ M − 1.

Using these probabilities, define the decomposition of I by

IY (y) △= [cY (y), cY (y) + pY (y)).

For pX , we use the same notations and definitions as those
for pY . For given y1 ∈ Y, define the cumulative probabili-
ties for pY (·|y1) = {pY (y2|y1)}y2∈Y by

cY (0|y1) △= 0, cY (y2|y1) △=
∑
i<y2

pY (i|y1), 1 ≤ y2 ≤ M − 1.

For k = 1, 2, · · ·, and any string yk = y1y2 · · · yk ∈ Yk,
define the semi-open interval IY (yk) △= [LY (yk), UY (yk )) by
the following recursions:

LY (y1) = cY (y1),
UY (y1) = cY (y1) + pY (y1)
LY (yi) = LY (yi−1) + pY (yi−1)cY (yi|yi−1),
UY (yi) = LY (yi) + pY (yi), for 2 ≤ i ≤ k.

 (1)

The procedure of computing upper and lower end points of
the interval corresponding to a given sequence is equivalent
to the encoding algorithm in the arithmetic coding.

Interval algorithm by Han and Hoshi [3] can be stated in
the following.
Interval Algorithm (Han and Hoshi [3]):

1) Set i = k = 1, y0 = λ.

2) Given yi−1, generate a letter yi ∈ Y according to the
transition provability Pyi−1yi of the coin random vari-
able.

3) Compute IY (yi) = [LY (yi),UY (yi)) according to the re-
cursion (1).

4) If IY (yi) ⊆ IX(x) for some x ∈ X, then output x as the
value of target random variable X and stop the algo-
rithm.

5) Set i = k + 1 and go to 2).

In the above interval algorithm the target random vari-
able X can exactly be produced.

3. An Explicit Representation of the Interval Algo-
rithm

In this section we give two expressions of real numbers
in the interval I = [0, 1) on the number system. There is
some complementary relation between the above two ex-
pressions. Using those expressions we give an explicit form
of the interval algorithm.

3.1. Representation of real numbers

For z ∈ [0, 1), define the sequence {ai}∞i=1 ∈ Y∗ such that

z ∈ IY (ai), i = 1, 2, · · · .

It can easily be verified that using a1, a2, · · ·, z can be ex-
pressed in the following manner:

z =
∑
k≥1

pY (ak−1)
∑
a<ak

pY (a|ak−1) =
∑
k≥1

pY (ak−1)cY (ak |ak−1).

We call the above expression the pY -ary representation of
the real number z and write as

z = 0.a1a2a3 · · · . (2)

In the above expression, if we wish to express z with the
sum of the number having the expression

0.a1a2a3 · · · at00 · · ·

and the other remaining term, we write

z = 0.a1a2 · · · at + 0.0a1 0a2 · · · 0at at+1 · · · , (3)

where the second term is defined by

0.0a1 0a2 · · · 0at at+1 · · ·
△
=
∑

k≥t+1

pY (ak−1)cY (ak |ak−1).

Next, for z ∈ [0, 1), set z̄ = 1− z. Using the sequence {ai}i≥1
appearing in the pY -ary representation of the real number
z, z̄ has an expression

z̄ =
∑
k≥1

pY (ak−1)
∑
a>ak

pY (a|ak−1).
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Then, adopting the notation

cY (ā|ak−1) △=
∑
i>a

pY (i|ak−1) ,

we obtain the following expression

z̄ =
∑
k≥1

pY (ak−1)cY (āk |ak−1).

We call the above expression the pY -ary co-
representation of the real number z and write as

z̄ = 0.ā1ā2ā3 · · · . (4)

Let z(n) denote the real number which is obtained by round-
ing off z to n-digits in the pY -ary representation, that is,

z(n) △= 0.a1a2 · · · an.

Similarly, let z̄(n) denote the real number which is ob-
tained by rounding off z̄ to n-digits in the pY -ary co-
representation, that is,

z̄(n) △= 0.ā1ā2 · · · ān.

It can easily be verified that the pY -ary representation and
the pY -ary co-representation of the real number z satisfy
the following.

Property 1

a) For any i, z ∈ IY (ai).

b) cY (ai|ai−1) + cY (āi|ai−1) = 1 − pY (ai|ai−1).

c) For z = 0.a1a2 · · · an · · · ∈ [0, 1), we have

z(n) + z̄(n) = 1 − pY (an).

3.2. An explicit representation of the interval algo-
rithm

In this subsection, we give an explicit form of the inter-
val algorithm by using the pY -ary representation and pY -
ary co-representation of the real number in the interval
I = [0, 1). It can easily be seen from the definition of the
interval algorithm the interval IX(x) = [LX(x), UX(x)) cor-
responding to the target random number x ∈ X has a form
of a disjoint sum of the intervals IY (·). In our previous work
we obtained an explicit form of the disjoint sum in the case
where the source {Yt}∞t=1 representing coin tossings is a dis-
crete memoryless source. In the present case where {Yt}∞t=1
is a stationary Markov source the same result holds. This
result is as follows.

Theorem 1 For x ∈ X, let IX(x) = [LX(x),UX(x)) be an in-
terval corresponding to the target random variable X tak-
ing values in X. Suppose that lower and upper endpoints

LX(x) and UX(x) have the following pY -ary representation
and pY -ary co-representations:

LX(x) = 0.a1a2 · · · , LX(x) = 0.ā1ā2 · · · ,
UX(x) = 0.b1b2 · · · .

For each x ∈ X, there exists an integer t = t(x) such that
representations of LX(x) and UX(x) have first different val-
ues at the t-th place at their pY -ary representations. Then,
we have

pX(x) = pY (at−1)
[
dY (at, bt |at−1)

+
∑

k≥t+1

{
pY (ak−1

t )cY (āk |ak−1) + pY (bk−1
t )cY (bk |bk−1)

} , (5)

where

dY (at, bt |at−1) △=
∑

at<a<bt

pY (a|at−1)

and dY (at, bt |at−1) = 0 when bt = at + 1. The above expres-
sion leads to the following description of IX(x) with the dis-
joint sum of intervals corresponding to the target random
sequences in the interval algorithm:

IX(x) =
∑

at<y<bt

IY (at−1y)

+
∑

k≥t+1

∑y>ak

IY (ak−1y) +
∑
y<bk

IY (bk−1y)

 . (6)

It can be seen from the above presentation that the inter-
val
∑

at<y<bt
IY (at−1y) is in the middle of the interval IX(x)

and that the sequence of intervals { ∑y>ak+1
IY (aky)}k≥t en-

tirely covers the lower part of the interval IX(x). Those
intervals are called downward sequences in Han and Hoshi
[3]. We also know that the sequence of intervals {∑y<bk

IY (bk−1y) }k≥t+1 in the third term in the right member of the
above equation entirely covers the upper part of IX(x). This
sequence of the intervals are called upward sequence in
Han and Hoshi [3]. The result of Theorem can be regarded
as giving an explicit form of upward/downward sequences
of intervals in the interval algorithm. Those sequences of
intervals is shown in Fig. 1.

As a corollary of this theorem we can obtain a result,
which is quite useful for the performance algorithm of the
interval algorithm. To describe this result we define some
quantities: For each a ∈ {1, 2, · · · ,M − 1}, let {lk,a}k≥1 be a
sequence of positive integers satisfying

t − 1 ≤ l1,a < l2,a < · · · < li,a < li+1,a < · · · .

Similarly, for each b ∈ {0, 1, · · · ,M − 2}, let
{
l̃k,b
}
k≥1

be a
sequence of positive integers satisfying

t ≤ l̃1,b < l̃2,b < · · · < l̃i,b < l̃i+1,b < · · · .
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Figure 1: Upward and downward sequences of intervals.

The two families of sequences

{lk,a}k≥1,1≤a≤M−1 and
{
l̃k,b
}
k≥1,0≤b≤M−2

are uniquely determined by the representation (5) of inter-
val algorithm in Theorem 1. Details are found in [4]. The
following is a corollary of Theorem 1.

Corollary 1 For each x ∈ X, we have

pX(x) = pY (at(x)−1)

×
∑
k≥1

M−1∑
a=1

pY

(
alk,a+1

t

∣∣∣∣ at−1

)
+

M−2∑
b=0

pY

(
bl̃k,b+1

t

∣∣∣∣ at−1

) ,
where if l1,a = t − 1, then pY

(
al1,a+1

t

∣∣∣∣ at−1

)
= pY (a|at−1).

4. Performance Analysis of the Interval Algorithm

In this section we present a rigorous performance anal-
ysis of the interval algorithm using the expression of the
interval algorithm we gave in the previous section. Set

η0(a, x|at−1) △=
∑
k≥1

pY

(
alk,a+1

t

∣∣∣∣ at−1

)
, (7)

η1(b, x|at−1) △=
∑
k≥1

pY

(
bl̃k,b+1

t

∣∣∣∣ at−1

)
. (8)

Define two probability distributions on positive integers by

p(0)
Y (·|a, x, at−1) △=


pY

(
alk,a+1

t

∣∣∣∣ at−1

)
η0(a, x|at−1)


k=1,2,···

,

p(1)
Y (·|b, x, at−1) △=


pY

(
bl̃k,b+1

t

∣∣∣∣ at−1

)
η1(b, x|at−1)


k=1,2,···

.

Let pmax
△
= max(i, j)∈Y2 Pi j. Define the geometrical distribu-

tion p∗ with parameter pmax by

p∗ △=
{
pmax

k−1(1 − pmax)
}
k=1,2,···

.

For each a ∈ Y, let Y2(a) be a random variable having the
distribution {Pr{Y2 = y|Y1 = a}}y∈Y. The entropy rate of
{Yt}∞t=1 is given by

H(Y2|Y1) =
M−1∑
a=0

pY (a)H(Y2(a)).

We set

Hmax(Y2(·)) △= max
a∈Y

H(Y2(a)),

Hmin(Y2(·)) △= min
a∈Y

H(Y2(a)).

The following is our main result.

Theorem 2
H(X)

Hmax(Y2(·)) ≤ L̄ ≤ H(X)
Hmin(Y2(·)) +

log 2(M − 1)
Hmin(Y2(·))

+
h(pmax)

Hmin(Y2(·))(1 − pmax)
− ∆

Hmin(Y2(·)) , (9)

where ∆ is a nonnegative number defined by

∆
△
=

N−1∑
x=0

pY (at(x)−1)

×
M−1∑

a=1

η0(a, x|at−1)D(p(0)
Y (·|a, x, at−1) ∥ p∗)

+

M−2∑
b=0

η1(b, x|at−1)D(p(1)
Y (·|b, x, at−1) ∥ p∗)

 .
By letting ∆ = 0 in (9), we obtain the upper bound of

L̄ derived by Han and Hoshi [3]. Hence our upper bound
improves their one. The quantity ∆ indicates a lower bound
of the deviation of the upper bound of L̄ obtained by Han
and Hoshi [3] from the true value of L̄. This quantity is
characterized with the pY -ary representation and the pY -
ary co-representation of the endpoints of the intervals cor-
responding to the target random numbers.
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