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Abstract—Discrete breathers are spatially localized pe-
riodic solutions in nonlinear lattices. We have proved the
existence of discrete breathers having odd and even parity
symmetries, i.e., Sievers-Takeno and Page modes, in one-
dimensional Fermi-Pasta-Ulam type lattices for a class of
nonhomogeneous potentials. Moreover, we have proved
that the Sievers-Takeno mode is spectrally unstable while
the Page mode is spectrally stable.

1. Introduction

Spatially localized excitation in nonlinear space-discrete
dynamical systems has attracted great interest since the
ground-breaking work by Takenoet al. [1, 2]. The lo-
calized mode is calleddiscrete breather(DB) or intrinsic
localized mode. Considerable progress has been achieved
in understanding the nature of DB so far (e.g., [3, 4] and
references therein).

The DBs are time-periodic and spatially localized so-
lutions of the equations of motion. From the mathemat-
ical point of view, fundamental issues are their existence
and stability. The anti-continuous limit is a useful concept
for proving the existence of DBs. Existence proofs based
on this concept have been given for various lattice models
[5, 6]. The stability of DBs also has been studied near the
limit [7, 8, 9, 10].

The FPU lattice is one of the fundamental lattice mod-
els in physics, to which the anti-continuous limit approach
is not applicable. Two types of fundamental DB so-
lutions that have different spatial symmetries, i.e., odd
and even parity DB solutions, are known for this model.
The odd and even parity DBs are called Sievers-Takeno
(ST) mode [1, 2] and Page (P) mode [11], respectively.
Normalized spatial profiles of the ST and P modes in a
one-dimensional FPU lattice are approximately given by
(. . . , 0,−1/2,1,−1/2,0, . . .) and (. . . , 0,−1,1,0, . . .) in the
regime of strong localization, respectively, provided that
interaction potentials of the lattice are of hard type. These
two modes were originally found by approximate analyti-
cal calculations and then numerically confirmed.

For the FPU model, the first existence proof of DB solu-
tions with odd and even parity symmetries was given in the
particular case of homogeneous potential [12]. For more
general nonhomogeneous potentials, an existence proof has

been given by using a center manifold reduction technique
[13]: the existence of DB solutions with odd and even par-
ity symmetries has been proved in a regime of weak local-
ization, where the DBs have small amplitudes and frequen-
cies close to the phonon band edge. In other regimes, no
existence proof has been given. As for the stability of DBs,
it has been clarified only numerically so far for the FPU
lattices [14] and there has been no rigorous result.

In this study, we consider one-dimensional nonhomoge-
neous potential FPU lattices with periodic boundary condi-
tions, and prove existence of the odd and even parity DBs,
i.e., the ST and P modes, in the regime of strong local-
ization. To this end, we develop a new approach which is
based on the use of an associated homogeneous potential
FPU lattice and Banach’s fixed point theorem. Moreover,
we prove that the odd and even parity DB solutions are
spectrally unstable and stable, respectively.

2. Lattice model

We consider the one-dimensional FPU lattices described
by the Hamiltonian

H =
N∑

i=−N

1
2

p2
i +

N∑
i=−N

V(qi+1 − qi), (1)

whereqi ∈ R, pi ∈ R, V is a potential function, and the
periodic boundary conditionsq±(N+1) = q∓N andp±(N+1) =

p∓N are assumed. LetN0 = 2N + 1, which represents the
number of degrees of freedom. Hamiltonian (1) describes
one-dimensional chains of unit-mass particles with nearest
neighbour interactions byV. The position and momentum
of theith particle are represented byqi andpi , respectively.

Let X ∈ R, µ ∈ Rl be a set of parameters, andO ⊂ Rl

be a neighbourhood ofµ = 0. We assume the interaction
potentialV to be defined by

V(X) =W(X, µ) +
1
k

Xk, (2)

where:

(P1) k ≥ 4 is an even integer;
(P2) W(X, µ) : R ×O→ R is aC2 function ofX andµ;
(P3) W(X, 0) = 0 for all X ∈ R.
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A typical nonhomogeneous potential often used in the lit-
erature is polynomial potential. Equation (2) incorporates
the polynomial potentialW(X, µ) =

∑k−1
r=2 µr Xr , whereµ =

(µ2, . . . , µk−1), as an example.
Hamiltonian (1) defines the equations of motion in the

phase spaceR2N0 which is endowed with the symplectic
2-formω =

∑N
i=−N dqi ∧ dpi as follows:

q̇i = pi , ṗi = V′(qi+1 − qi) − V′(qi − qi−1), (3)

where i = −N, . . . ,N. Let Γ(t) = (q(t), p(t)) ∈ R2N0 be
a T-periodic solution of Eq. (3), whereq = (q−N, . . . , qN)
andp = (p−N, . . . , pN) are the position and momentum vec-
tors. Letξi be the variation inqi , and we use the notation
ξ = (ξ−N, . . . , ξN). Linearizing Eq. (3) alongΓ(t), we ob-
tain the variational equations in the second-order differen-
tial equation form as follows:

ξ̈ + A(t) ξ = 0, (4)

where A(t) is the Hessian matrix of the potential func-
tion evaluated onΓ(t), i.e., its components are given by
[A(t)] i j = ∂

2U(q(t))/∂qi∂q j , whereU =
∑N

i=−N V(qi+1−qi).
Let { ξ1, . . . , ξ2N0 } be a system of fundamental solutions

of Eq. (4). According to the Floquet theory, the funda-
mental solutions of Eq. (4) att and t + T are related via
a 2N0 × 2N0 monodromy matrixM as(
ξ1(t + T), . . . , ξ2N0(t + T)

)
=
(
ξ1(t), . . . , ξ2N0(t)

)
M. (5)

Eigenvalues ofM are called the characteristic multipliers
and they are independent of the choice of fundamental so-
lutions. Letρi , i = 1, . . . , 2N0 be the characteristic mul-
tipliers of Γ(t). The spectral stability ofΓ(t) is defined as
follows.

Definition 1. Periodic solutionΓ(t) is said to be spectrally
unstable if there existsρi such that|ρi | > 1, otherwise it is
said to be spectrally stable.

3. Symmetry of solution

We precisely describe the odd and even parity symme-
tries in this section. LetSO andSE be the linear mappings
SO, SE : RN0 → RN0 defined by

SO : (SO·x)i = −x−i , i = −N, . . . ,N

SE : (SE ·x)i = −x−(i+1), i = −N, . . . ,N

wherex = (x−N, . . . , xN) ∈ RN0 represents a point in the
spaceRN0 and x−(N+1) = xN due to the periodic boundary
conditions. TheseSO andSE are linear involutions, i.e.,
SO ◦ SO = SE ◦ SE = id.

Let Γ(t) = (q(t), p(t)) ∈ R2N0 denote a periodic solution
of Eq. (3) with a periodT. The solutionΓ(t) is said to have
odd symmetry if it satisfies the relations

SO·q(t+T/2) = q(t), SO·p(t+T/2) = p(t), ∀t ∈ R. (6)

When the interaction potential is an even function, i.e.,
V(X) = V(−X), an additional symmetryΓ(t +T/2) = −Γ(t)
holds. Then equation (6) reduces to

−SO·q(t) = q(t), − SO·p(t) = p(t), ∀t ∈ R. (7)

On the other hand,Γ(t) is said to have even symmetry if it
satisfies the relations

SE ·q(t) = q(t), SE ·p(t) = p(t), ∀t ∈ R. (8)

Equations (6) and (8) correspond to the solution profiles
centered ati = 0 site and that centered betweeni = −1 and
0 sites, respectively.

4. Notations

We introduce some notations to state the main theorems.
Consider the scalar differential equation

φ̈ + φ k−1 = 0. (9)

Equation (9) has the energy integralφ̇2/2+φk/k = h, where
h is an integration constant. Its solution is non-constant
and periodic for any givenh > 0. Letφ(t) be the solution
of Eq. (9) with initial conditionsφ(0) = (kh)1/k > 0 and
φ̇(0) = 0. The periodT of φ(t) depends onh, and it is
obtained from the energy integral as follows:

T = 2
√

2h−(1/2−1/k)
∫ k1/k

0

1√
1− xk/k

dx. (10)

This indicatesT ∝ h−(1/2−1/k) and thatT monotonically de-
creases fromT = +∞ to 0 ash varies fromh = 0 to+∞,
since the integral in Eq. (10) is independent ofh. Thus, for
any givenT > 0, there exists a non-constant periodic so-
lution φ(t) with the periodT, which corresponds to a value
of h uniquely determined from Eq. (10). We denote this
T-periodic solution of Eq. (9) withφ(t; T).

LetΠO andΠE be the subspaces ofRN0 defined by

ΠO =
{

x ∈ RN0 ; − SO·x = x
}
, (11)

ΠE =
{

x ∈ RN0 ; SE ·x = x
}
, (12)

wherex = (x−N, . . . , xN). TheseΠO andΠE are subspaces
in the configuration spaceRN0 that satisfy the odd and even
symmetries, respectively (cf. Eqs. (7) and (8)).

Let m ∈ N, c > 0, and 0< r < 1 be parameters. We
define a closed subsetBm,c,r ⊂ RN0 as follows:

Bm,c,r =
{

x ∈ RN0 ; |xi | ≤ c for 0 ≤ i ≤ m,

|xi | ≤ cr(k−1)i−m
for m+ 1 ≤ i ≤ N

}
. (13)

This subsetBm,c,r is specified by the three parameters
(m, c, r). Equation (13) shows that the interval ofxi rapidly
decreases with increasingi in Bm,c,r .
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Consider the phase spaceR2N0 of Hamiltonian system
(1). LetΠ be the subspace ofR2N0 defined by

Π =
{
(q, p) ∈ R2N0 ;

∑N
i=−N qi =

∑N
i=−N pi = 0

}
. (14)

This is the subspace in which both the mass center and the
total momentum are zero. Sinced(

∑N
i=−N pi)/dt = 0 fol-

lows from Eq. (3) and the periodic boundary conditions,Π
is an invariant subspace of Hamiltonian system (1).

5. Main results

Our main theorems for the existence and spectral stabil-
ity are stated as follows. Theorems 1 and 2 are for the odd
and even parity DB solutions, i.e., the ST and P modes, re-
spectively.

Theorem 1.Suppose potential function (2) and (P1)-(P3).
Let {ai}Ni=−N and (m, c, r) be constants given in Table 1 for
k. Then, for any N≥ 4 and any T> 0, there exists a unique
x ∈ Bm,c,r ∩ ΠO such thatΓ0

ST(t; T) = (uφ(t; T),uφ̇(t; T)) ∈
R2N0 is a T-periodic solution of FPU lattice (1) withµ = 0,
where u= a + x and a= (a−N, . . . , aN). Moreover, there
exist a neighbourhood U⊂ Rl of µ = 0 and a unique fam-
ily ΓST(t; T, µ) of T-periodic solutions of FPU lattice (1)
for µ ∈ U such thatΓST(t; T, µ) is C1 with respect to t and
µ, ΓST(t; T, µ) ∈ Π, ΓST(t; T,0) = Γ0

ST(t; T), and it satis-
fies odd symmetry (6). The periodic solutionΓST(t; T, µ) is
spectrally unstable with one unstable characteristic multi-
plier.

k = 4

a0 = 0.3762
a±1 = −0.1968
a±2 = 8.67× 10−3

ai = 0 (otherwise)
(m, c, r) = ( 3, 9× 10−5, 3× 10−3 )

k = 6

a0 = 0.5057
a±1 = −0.2539
a±2 = 1.1× 10−3

ai = 0 (otherwise)
(m, c, r) = ( 3, 8× 10−5, 7× 10−4 )

k ≥ 8

a0 = 2× 3−(k−1)/(k−2)

a±1 = −3−(k−1)/(k−2)

ai = 0 (otherwise)
(m, c, r) = ( 2,2.02× 3−(k−1)2/(k−2),5× 10−3 )

Table 1

Theorem 2.Suppose potential function (2) and (P1)-(P3).
Let {ai}Ni=−N and (m, c, r) be constants given in Table 2 for
k. Then, for any N≥ 4 and any T> 0, there exists a unique
x ∈ Bm,c,r ∩ ΠE such thatΓ0

P(t; T) = (uφ(t; T),uφ̇(t; T)) ∈
R2N0 is a T-periodic solution of FPU lattice (1) withµ =
0, where u = a + x and a = (a−N, . . . , aN). Moreover,

there exist a neighbourhood U⊂ Rl of µ = 0 and a unique
familyΓP(t; T, µ) of T-periodic solutions of FPU lattice (1)
for µ ∈ U such thatΓP(t; T, µ) is C1 with respect to t andµ,
ΓP(t; T, µ) ∈ Π, ΓP(t; T,0) = Γ0

P(t; T), and it satisfies even
symmetry (8). The periodic solutionΓP(t; T, µ) is spectrally
stable.

k = 4

a0 = −a−1 = 0.323
a1 = −a−2 = −0.0535
ai = 0 (otherwise)
(m, c, r) = ( 2, 3× 10−4, 6× 10−3 )

k = 6

a0 = −a−1 = 0.4166
a1 = −a−2 = −0.015
ai = 0 (otherwise)
(m, c, r) = ( 2, 9× 10−5, 7× 10−4 )

k = 8

a0 = −a−1 = 0.44484
a1 = −a−2 = −3.65× 10−3

ai = 0 (otherwise)
(m, c, r) = ( 2, 2× 10−5, 2× 10−4 )

k = 10

a0 = −a−1 = 0.45839
a1 = −a−2 = −9.1× 10−4

ai = 0 (otherwise)
(m, c, r) = ( 2, 2× 10−5, 8× 10−5 )

k ≥ 12

a0 = −a−1 = (1+ 2k−1)−1/(k−2)

ai = 0 (otherwise)
(m, c, r)
= ( 1, 2.02 (1+ 2k−1)−(k−1)/(k−2), 2× 10−3 )

Table 2

Remark 1. If Γ(t) is a periodic solution of autonomous
Hamiltonian system (1), then so is a phase-shifted solution
Γ(t + τ) for ∀τ ∈ R and it has the same orbit asΓ(t) in the
phase space. Two periodic solutions are identified if they
differ only by a phase-shift.

Remark 2. We assumed theµ-dependent potentialW of
nearest-neighbor interaction type in Eqs. (1) and (2), focus-
ing on the FPU lattices. This assumption is not essential.
The statements of Theorems 1 and 2 hold for a more gen-
eral HamiltonianH =

∑N
i=−N p2

i /2+
∑N

i=−N(qi+1 − qi)k/k +
W(q, µ), provided thatW is aC2 function ofq andµ such
that W(q, 0) = 0 andW(q + cε, µ) = W(q, µ) for ∀c ∈ R,
whereε = (1, . . . , 1) ∈ RN0

Remark 3. Theorems 1 and 2 imply the existence of spa-
tially periodic array of odd or even parity DB solutions in
the infinite FPU lattices.

In Theorem 1, the approximation vectora has non-zero
components on only a small number of sites with the in-
dices satisfying|i| < m, and it represents a strongly local-
ized profile. The theorem states that the profile vectoru of
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Γ0
ST(t; T) is close toa and satisfies

|ui − ai | ≤
{

c if |i| ≤ m,
c r(k−1)|i|−m

otherwise.

In addition, the latter inequality indicates rapid decrease
of |ui | with increasing|i|, since it is equivalent to|ui | ≤
c r(k−1)|i|−m

due toai = 0, |i| ≥ m. ThusΓ0
ST(t; T) is a strongly

localized solution. The solutionΓST(t; T, µ) is also strongly
localized for smallµ because of its continuity with respect
to µ. Similarly, Theorem 2 shows that bothΓ0

P(t; T) and
ΓP(t; T, µ) have strongly localized profiles. The approxi-
mations{ai}Ni=−N play a crucial role in the theorems.

6. Strategy of proofs of the theorems

We outline our strategy for proving Theorems 1 and 2.
First, we consider the homogeneous potential FPU lattice
which is described by Hamiltonian (1) with the potential
V(X) = Xk/k, i.e.,µ = 0 in Eq. (2). In this particular lattice,
it is possible to find a DB solution in the formq = uφ(t),
whereu ∈ RN0 is a constant vector describing the spatial
profile of the solution. The problem of finding a DB solu-
tion is reduced to a set of algebraic equations foru, and we
solve it by using Banach’s fixed point theorem in a neigh-
borhood of the approximation{ai}Ni=−N. This fixed point
approach enables one to obtain a precise quantitative esti-
mation ofu that has odd or even parity symmetry. Using
this estimation ofu, we evaluate the characteristic multipli-
ers, i.e., the spectral stability, of the DB solution.

Next, we consider the nonhomogeneous potential FPU
lattice, i.e.,µ , 0 in Eq. (2). The DB solution in the homo-
geneous potential lattice is continued to a nonhomogeneous
potential one for smallµ , 0 by using the implicit function
theorem, based on the characteristic multipliers forµ = 0.
We show that this continuation retains odd or even parity
symmetry of the DB solution. Finally, we evaluate varia-
tions of the characteristic multipliers under the perturbation
in µ to determine the spectral stability of the DB solution
for µ , 0.
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