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Abstract—Discrete breathers are spatially localized pebeen given by using a center manifold reduction technique
riodic solutions in nonlinear lattices. We have proved th§l3]: the existence of DB solutions with odd and even par-
existence of discrete breathers having odd and even parity symmetries has been proved in a regime of weak local-
symmetries, i.e., Sievers-Takeno and Page modes, in oneation, where the DBs have small amplitudes and frequen-
dimensional Fermi-Pasta-Ulam type lattices for a class @fes close to the phonon band edge. In other regimes, no
nonhomogeneous potentials. Moreover, we have provexistence proof has been given. As for the stability of DBs,
that the Sievers-Takeno mode is spectrally unstable whiiehas been clarified only numerically so far for the FPU
the Page mode is spectrally stable. lattices [14] and there has been no rigorous result.

In this study, we consider one-dimensional nonhomoge-
neous potential FPU lattices with periodic boundary condi-
tions, and prove existence of the odd and even parity DBs,
. . T . . i.e., the ST and P modes, in the regime of strong local-
Spatially localized excitation in nonlinear space-discretg

dynamical systems has attracted great interest since tbzgtlon. To this end, we develop a new approach which is

ground-breaking work by Takenet al. [1, 2]. The lo- ased on the use of an ,as.somatec_j homogeneous potential
. . . T FPU lattice and Banach’s fixed point theorem. Moreover,
calized mode is callediscrete breathe(DB) or intrinsic

localized mode Considerable progress has been achieved- Prove that the odd and even pant'y DB solutions are
ectrally unstable and stable, respectively.

in understanding the nature of DB so far (e.g., [3, 4] and”
references therein).

The DBs are time-periodic and spatially localized so2. Lattice model
lutions of the equations of motion. From the mathemat-
ical point of view, fundamental issues are their existence We consider the one-dimensional FPU lattices described
and stability. The anti-continuous limit is a useful concepPy the Hamiltonian
for proving the existence of DBs. Existence proofs based

1. Introduction

N N
on this concept have been given for various lattice models _ 1 .
[5, 6]. The stability of DBs also has been studied near the "= i; 2P i; V@1 -a). @
limit [7, 8, 9, 10].

The FPU lattice is one of the fundamental lattice modwhereq € R, pi € R, V is a potential function, and the
els in physics, to which the anti-continuous limit approaciperiodic boundary conditiong.(.+1) = dzn and ps1) =
is not applicable. Two types of fundamental DB so-:n are assumed. Létp = 2N + 1, which represents the
lutions that have dierent spatial symmetries, i.e., oddnumber of degrees of freedom. Hamiltonian (1) describes
and even parity DB solutions, are known for this modelone-dimensional chains of unit-mass particles with nearest
The odd and even parity DBs are called Sievers-Takenm@eighbour interactions by. The position and momentum
(ST) mode [1, 2] and Page (P) mode [11], respectivelhof theith particle are represented byandp;, respectively.
Normalized spatial profiles of the ST and P modes in a Let X € R, 4 € R' be a set of parameters, a@dc R
one-dimensional FPU lattice are approximately given bige a neighbourhood ¢f = 0. We assume the interaction
(...,0,-1/2,1,-1/2,0,...)and (..,0,-1,1,0,...) in the  potentialV to be defined by
regime of strong localization, respectively, provided that
interaction potenual.s _of the lattice are of hard type. The;e V(X) = W(X, 1) + 1 NG @)
two modes were originally found by approximate analyti- K
cal calculations and then numerically confirmed. where:

For the FPU model, the first existence proof of DB solu- ’
tions with odd and even parity symmetries was given in the(P1) k > 4 is an even integer;
particular case of homogeneous potential [12]. For morgP2) W(X,u) : R x O — R is aC? function of X andy;
general nonhomogeneous potentials, an existence proof hgie3) W(X,0) = 0 for all X € R.
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A typical nonhomogeneous potential often used in the litWhen the interaction potential is an even function, i.e.,
erature is polynomial potential. Equation (2) incorporate¥(X) = V(-X), an additional symmetrj(t + T/2) = —I'(t)

the polynomial potentiaWW(X, i) = Z',‘;%;J,X’, whereu =  holds. Then equation (6) reduces to

(uz,...,uk-1), @as an example.

Hamiltonian (1) defines the equations of motion in the -So-q(t) = q(t). —So-p(t) = p(t), "teR. (7)
phase spac&?e which is endowed with the symplectic S o
2-formw = YN _,, dg A dp as follows: On the other hand;(t) is said to have even symmetry if it

satisfies the relations
G=p, P=V(@Qua-ad)-V@-0d-1), (3)

wherei = —=N,...,N. LetT(t) = (q(t), p(t)) € R?Ne be

a T-periodic solution of Eq. (3), wherg = (q_n,...,qy) EdQuations (6) and (8) correspond to the solution profiles
andp - (p—N’ e pN) are the position and momentum VeC_CenterEd at = 0 site and that centered betweden -1 and
tors. Leté be the variation irg;, and we use the notation O sites, respectively.

& = (£-n,...,&N). Linearizing Eq. (3) alond'(t), we ob-

tain the variational equations in the second-ordéied®n- 4. Notations

tial equation form as follows:

Se-q(t) = q(t), Se-p(t) =pt), "teR.  (8)

~ We introduce some notations to state the main theorems.
E+AME=0, (4)  Consider the scalar fierential equation

where A(t) is the Hessian matrix of the potential func- é+¢<t=0. 9)

tion evaluated ol'(t), i.e., its components are given by

[A®)];; = 82U(q(t))/dqidq;, whereU = SN | V(gi,1—q).  Equation (9) has the energy integ¢d) 2+¢*/k = h, where
Let{é&s,...,&n, } be a system of fundamental solutionsh is an integration constant. Its solution is non-constant

of Eg. (4). According to the Floquet theory, the fundaand periodic for any giveh > 0. Let¢(t) be the solution

mental solutions of Eq. (4) atandt + T are related via of Eq. (9) with initial conditionsy(0) = (kn)/* > 0 and

a 2Np x 2Ny monodromy matrixM as #(0) = 0. The periodT of ¢(t) depends orh, and it is
obtained from the energy integral as follows:
(Lt +T), ... éon(t+ T)) = (62(t), ..., Eang () M. (5) ;
kl
1
Eigenvalues oM are called the characteristic multipliers T= 2‘/§hf(1/271/k)f T dx (10)
and they are independent of the choice of fundamental so- 0 Y1-xk
lutions. Letp;, i = 1,...,2Ng be the characteristic mul- __ . . . e .
- - i . This indicatesT o« h-1/2-1/% and thafT monotonically de-
;gjl:lc?v:/z of I'(t). The spectral stability of (t) is defined as creases frornT = +co to 0 ash varies fromh = 0 to +co,

since the integral in Eq. (10) is independentofhus, for
Definition 1. Periodic solution'(t) is said to be spectrally any givenT > 0, there exists a non-constant periodic so-
unstable if there exists; such thatjp;| > 1, otherwise itis |ution ¢(t) with the periodT, which corresponds to a value

said to be spectrally stable. of h uniquely determined from Eq. (10). We denote this
T-periodic solution of Eq. (9) witl(t; T).
3. Symmetry of solution Let ITo andIlg be the subspaces Bf defined by
We precisely describe the odd and even parity symme- o = {X eRV; —Sg-x= X}, (11)

tries in this section. LeSo andSg be the linear mappings

So. S : R > R™ defined by e

{xeRNO; SE-x=x}, (12)

So: (So-X) = —Xi, i =-N N wherex = (X_n,. .., Xn). Thesellp andIlg are subspaces
O A20" i b e in the configuration spade™e that satisfy the odd and even

Se: (Se-X)i =X+, i=-N,....N symmetries, respectively (cf. Egs. (7) and (8)).

Letme N, c > 0, and O< r < 1 be parameters. We

— N H H
wherex = (Xn,...,Xn) € R represents a point in the define a closed subsBlyc, ¢ R™ as follows:

spaceRNe and X_(N+1) = Xn due to the periodic boundary
conditions. Thes&g and Sg are linear involutions, i.e.,

So0So = Se oS = id Brer = {xeR™; x| <cfor0<i<m

LetI'(t) = (q(t), p(t)) € R? denote a periodic solution x| < cr® D" form+1<i<N } (13)
of Eq. (3) with a periodr'. The solutiorT'(t) is said to have _ _ -
odd symmetry if it satisfies the relations This subsetBm., is specified by the three parameters

(m, c,r). Equation (13) shows that the intervalhxfrapidly
Soq(t+T/2) = q(t), So-pt+T/2)=p(t), ‘teR. (6) decreases withincreasingn By, .
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Consider the phase spaB8™ of Hamiltonian system there exist a neighbourhood U R' of z = 0 and a unique
(1). LetII be the subspace &\ defined by familyI'p(t; T, 1) of T -periodic solutions of FPU lattice (1)
for u € U such thatl's(t; T, 1) is Ct with respect to t ang,
= {(q, peRM; yN g=3N \pi=0 } (14)  Te(t; T,u) € I1, Tp(t; T,0) = [(t; T), and it satisfies even
symmetry (8). The periodic soluti®i(t; T, u) is spectrally

This is the subspace in which both the mass center and tgg,pje.
total momentum are zero. SindéziN:_N pi)/dt = O fol-

lows from Eg. (3) and the periodic boundary conditiofis,

is an invariant subspace of Hamiltonian system (1).

5. Main results
k=4

Our main theorems for the existence and spectral stabil-

ay = —a 1 =0.323

a; = —a_, = —0.0535

a = 0 (otherwise)

(mec,r)=(2 3x10% 6x1073)

ity are stated as follows. Theorems 1 and 2 are for the odd
and even parity DB solutions, i.e., the ST and P modes, re-

ag=-a_1 = 04166

a; = —a =-0.015

a = 0 (otherwise)

(mc,r)=(2 9%x10°, 7x10%)

spectively. k=6
Theorem 1. Suppose potential function (2) and (P1)-(P3).
Let{a,—}iN:_N and (m, c, r) be constants given in Table 1 for
k. Then, for any N> 4and any T> 0O, there exists aunique | _ g

X € By N To such thallg,(t; T) = (Ug(t; T), ug(t; T) €
R2No js a T -periodic solution of FPU lattice (1) witfa = O,

ag = —a_1 = 0.44484

a = —a,=-365x% 103

a = 0 (otherwise)

(mc,r)=(2 2x107°, 2x10%)

where u= a+ x and a= (a_y,...,an). Moreover, there
exist a neighbourhood & R' of x = 0 and a unique fam- k=10
ily I'st(t; T,u) of T-periodic solutions of FPU lattice (1)
for 4 € U such thaflst(t; T, x) is C with respect to t and

ag = —a_; = 0.45839
a=-a,=-91x 104

a = 0 (otherwise)

(mc,r)=(2 2x107°, 8x107°)

w, Tst(t; T,p) € I0, Tsr(t; T,0) = T (t; T), and it satis-
fies odd symmetry (6). The periodic solutiog(t; T, i) is K> 12

a=-ay=(L+ 270D
a = 0 (otherwise)
(mc,r)

spectrally unstable with one unstable characteristic multi-
plier. = (1, 202 (1+ 2x1)~(D/k-2) 2 1073)

Table 2

ap = 0.3762
a,; = —0.1968
k=4 a., =867x1073
g = 0 (otherwise)
(me,r)=(3,9x10° 3x107%)

Remark 1. If I'(t) is a periodic solution of autonomous
Hamiltonian system (1), then so is a phase-shifted solution
I'(t + 7) for Yz € R and it has the same orbit &) in the

ap = 0.5057 phase space. Two periodic solutions are identified if they
a.; = —-0.2539 differ only by a phase-shift.
- - 3
k=6 Zﬂ_ _Ol('olt;:e?\?vrise) Remark 2. We assumed thg-dependent potentialV of
(Me.r) = (3 8x 105, 7x 104) pearest-neighbor in'teraction.type in Eq§. (1.) and (2), focgs-
— ’2 3_(;(11) 2 ing on the FPU lattices. This assumption is not essential.
8 =£X ~(k-1)/(k-2) The statements of Theorems 1 and 2 hold for a more gen-
k>g | 17 -3 eral HamiltoniatH = 2N\ p?/2+ 3N\ (Gie1 — a)*/k +

g = 0 (otherwise)

(M.G.1) = (2.2,02% 3-E1P/62) 5 5 10°2) W(q, 1), provided thatV is aC? function ofg andu such

that W(g, 0) = 0 andW(q + ce, ) = W(q, i) for 'c € R,
wheree = (1,...,1) e RN

Table 1
Remark 3. Theorems 1 and 2 imply the existence of spa-
tially periodic array of odd or even parity DB solutions in

Theorem 2. Suppose potential function (2) and (Pl)-(P3).the infinite FPU lattices.

Let{ai}iN}N and (m, c, r) be constants given in Table 2 for
k. Then, forany N> 4 and any T> 0, there exists a unique
X € Bmer N I such thatf9(t; T) = (ug(t; T), ug(t; T)) €
R\ s a T-periodic solution of FPU lattice (1) with =
0, where u= a+ x and a= (an,...,an). Moreover,

In Theorem 1, the approximation vec@has non-zero
components on only a small number of sites with the in-
dices satisfyingi| < m, and it represents a strongly local-
ized profile. The theorem states that the profile veatof
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2 (t; T) is close toa and satisfies

if lij <m,

c
U — aj| < il-m .
i - al < { crleD"™  otherwise

(5]

In addition, the latter inequality indicates rapid decrease

of |u| with increasingli|, since it is equivalent tdu| <

cr®V"" due tog; = 0, il = m. ThusI'(t; T) is a strongly
localized solution. The solutiofst(t; T, i) is also strongly

(6]

localized for small because of its continuity with respect

to u. Similarly, Theorem 2 shows that bofl’ﬂ,(t;T) and

I'p(t; T, ) have strongly localized profiles. The approxi-

mations{a; }i“i_N play a crucial role in the theorems.

6. Strategy of proofs of the theorems

(7]

We outline our strategy for proving Theorems 1 and 2.[g]
First, we consider the homogeneous potential FPU lattice
which is described by Hamiltonian (1) with the potential

V(X) = XK/k, i.e.,u = 0in Eq. (2). In this particular lattice,

it is possible to find a DB solution in the forop = ug(t),

9]

whereu € R™ is a constant vector describing the spatial
profile of the solution. The problem of finding a DB solu-

tion is reduced to a set of algebraic equationsufand we
solve it by using Banach'’s fixed point theorem in a neigh:
borhood of the approximatiotai}i'\i_N. This fixed point

[10]

approach enables one to obtain a precise quantitative esti-
mation ofu that has odd or even parity symmetry. Using

this estimation ofi, we evaluate the characteristic multipli-

ers, i.e., the spectral stability, of the DB solution.

[11]

Next, we consider the nonhomogeneous potential FPU

lattice, i.e.,u # 0 in EqQ. (2). The DB solution in the homo-

geneous potential lattice is continued to a nonhomogeneous
potential one for smal # 0 by using the implicit function [12]

theorem, based on the characteristic multipliers.fer 0.

We show that this continuation retains odd or even parity

symmetry of the DB solution. Finally, we evaluate varia
tions of the characteristic multipliers under the perturbatio

[13]

in u to determine the spectral stability of the DB solution

for u # 0.
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