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Abstract—Electrical alternans is the alternating ampli-
tude from beat to beat in the action potential of the car-
diac cell. Spatial pattern of the alternans in the heart is
classified into two types: concordant and discordant alter-
nans. The former and latter indicate spatially uniform and
nonuniform distribution of the alternans. In this study, we
investigate bifurcations for a system of coupled two Luo-
Rudy models. As a result, we clarify the bifurcational
mechanism of generating discordant alternans. Moreover,
we determine existence of codimension-three bifurcations
related to generation of discordant alternans.

1. Introduction

Electrical alternans is a beat to beat alternation in the
action potential duration or amplitude of the cardiac cell
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Alternans is
classified into eight or more kinds in [2]. Occurrence
of the voltage or calcium-driven cellular alternans is ex-
plained by using action potential duration (APD) resti-
tution, calcium dynamics, or voltage-calcium coupling,
which is the dynamics in cellular level. On the other hand,
the concordant and discordant alternans occur in tissue
level. The former and latter corresponds to an in-phase
and anti-phase synchronized solution in a system of cou-
pled cells. The discordant alternans is related to QRS al-
ternans and triggers wave break and ventricular fibrillation
(VF) [2, 14, 15, 16, 17, 18, 19]. The generation mechanism
of the discordant alternans is usually explained by interac-
tion of APD and conduction velocity. However, the studies
of the discordant alternans from the viewpoint of the dy-
namical system is not clear as far as we know.

In this paper, we study a system of coupled two Luo-
Rudy I (LR) neurons [20] with synaptic inputs. We assume
that the signals from the pacemaker cell are normal. We
investigate the generation mechanism of the discordant al-
ternans in the system. In a previous study [21], we clarified
that alternans is generated by the period-doubling bifurca-
tion due to changing the value of free concentration of the
potassium ions in the extracellular compartment for the sin-
gle LR model. In general, considering a system of coupled
cells which have a period-doubling bifurcation, two types
of the period-doubling bifurcation: symmetry-preserving
and symmetry-breaking appear [22, 23, 24, 25, 26]. More-

over, the intersection of the two period-doubling bifurca-
tions occurs in a parameter plane, which is referred as a
codimension-three bifurcation, and the pitchfork bifurca-
tions of a higher periodic solution appear [27].

Using the numerical bifurcation analysis method
[28], we determined that the symmetry-preserving and
symmetry-breaking period-doubling bifurcations gener-
ate the concordant and discordant alternans, respectively.
Moreover, we found the parameter region of coexistence
of two kinds of alternans. Biexcitability was reported
[29, 30, 31], but these are for wave propagation in a two-
dimensionally coupled system. In this study, we showed
that the biexcitability is observed in a simpler system. We
consider that the study of a small number of coupled cells is
prototype to study the whole network because some groups
composed of synchronized cells can be treated as one cell.

2. Preliminaries

3. System Equations

We use the LR model [20] for the sake of simplicity. The
period of the external force (usually called “BCL”: basic
cycle length) is assumed to be 380 [ms]. The membrane
potentialsV1 andV2 of coupled two LR models with the
synaptic external input is described by

C
dV1

dt
= −(I1 + Isyn +Gv(V1 − V2)), (1)

C
dV2

dt
= −(I2 + Isyn +Gv(V2 − V1)), (2)

and the type and the dynamics for ionic currentsIi are given
in Appendix. The synaptic currentIsyn from the large cell
to the muscle cell is given by

Isyn = Gsyn (V − Vsyn)s(t∗), (3)

whereGsyn is the maximum synaptic conductance,Vsyn is
the reversal potential, ands(t∗) is given by

s(t∗) =
τ1

τ2 − τ1

(

− exp

(

−
t∗

τ1

)

+ exp

(

−
t∗

τ2

))

, (4)

whereτ1 andτ2 are the raise and decay time of the synapse.
We identify these values (τ1 = 5.5 andτ2 = 90.0[ms]) from
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the experimental data [32].t∗ is the time that is reset at
everynT (n is a natural number, andT is the BCL). We
check the periodicity of the trajectory by using the state
variables at everynT . The values of the parameters related
with the synapse are fixed asGsyn = 4.0 andVsyn = −29.0.

3.1. Symmetry

We assume that a system equation is described by

dx

dt
= f (x), x ∈ Rn (5)

A system is called invariant with respect tog of a groupG
(or G-equivariant) if

g f (x) = f (gx),∀g ∈ G. (6)

The fixed-point subspaceXG ⊂ Rn is defined as

XG
= {x ∈ Rn : gx = x,∀g ∈ G}. (7)

The setXG is a linear subspace ofRn. This subspace is an
invariant set of Eq. (5) [26, 33].

Considering our system (n = 16), the groupG is formed
by

G = {g}, g =

[

O I8

I8 0

]

(8)

whereO and I8 is zero and identity matrix, respectively.
The fixed-point subspaceXG is given by

XG
= {x ∈ R16 : gx = x}. (9)

We introduce the definitions of symmetric periodic solu-
tions [26].

Definition 3.1 A periodic solution ψ(t) is called in-phase
if gψ(t) = ψ(t) for all t ∈ R.

Definition 3.2 A periodic solution ψ(t) with (minimal) pe-
riod TS is called anti-phase if

gψ(t) = ψ(t + TS /2)

for all t ∈ R.

4. Results

We show a bifurcation diagram in Fig. 1. The negative
value ofGv is no meaning in physiological sense, however,
it is important from the viewpoint of the dynamical system
because of existence of the intersection of double period-
doubling bifurcations. Black thick lines denoted byI1 and
I3 present symmetry-preserving period-doubling bifurca-
tions, which means that an in-phase 2-periodic solution
(Fig. 2(a)) is generated from an in-phase solution. Period-
doubling bifurcationI2 is symmetry-breaking which gener-
ates an anti-phase 2-periodic solution (Fig. 2(b)). The in-
tersection points of these bifurcations (closed circles inFig.

1) are called a codimension-three bifurcation. It is known
that pitchfork bifurcations of 2-periodic solutions appear
from these points, those areD2

1 to D2
3. We explain the de-

tailed bifurcation structure around this codimension-three
bifurcation point using Fig. 3.

Figure 3 is a schematic diagram along curvel in Fig.
1. At the starting point ofl we observe stable in-phase 1-
periodic solution which corresponds to a normal state in
the cardiac system. Stable 2-periodic solutions synchro-
nized at anti-phase are generated at©1 . This solution (red
curve in Fig. 3) meets pitchfork bifurcationD2

2 and be-
comes unstable at©4 . It disappears at©5 . The unstable
in-phase 1-periodic solution (black dashed line) also meets
period-doubling bifurcation at©2 and unstable 2-periodic
solutions are generated. The stability turns to stable at©3

by pitchfork bifurcationD2
1. Thus, stable in-phase and anti-

phase 2-periodic solutions coexist between©3 and©4 . This
region is shown as overlapping of green and hatched pat-
tern in Fig. 1.

Figure 4 shows the difference between solutions denoted
by red and green curves in Fig. 3 using the plane (V1, V2).
The diagonal line (V1 = V2) represents the invariant sub-
spaceXG given by Eq. (9). The trajectory of anti-phase
(Fig. 4(a)) is symmetry with respect to the operationg in
Eq. (8). On the other hand, we obtain another solution
by the operationg for the solution without symmetry (Fig.
4(b)).

5. Conclusion

We investigated a system of coupled Luo-Rudy mod-
els. We introduced symmetries for the system and its so-
lutions. Using them, we clarified period-doubling bifurca-
tions into two types: symmetry-preserving and breaking.
The concordant and discordant alternans are generated by
the symmetry-preserving and breaking period-doubling bi-
furcations, respectively. We determined the parameter re-
gion of coexistence of these two alternans.
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Appendix

Ionic currentsI1 and I2 in Eqs. (1) and (2) consist of
following currents:

INa = GNam3h j(V − ENa), (sodium current),

IS i = GS id f (V − ES i ), (slow inward current),

IK = GK XXi(V − EK ),GK = 0.282
√

[K]o/5.4,

EK =
RT
F

ln

(

[K]o + PRNaK[Na]o

[K]i + PRNak[Na]i

)

,

(time-independent potassium current),

IK1 = GK1K1∞(V − EK1),GK1 = 0.6047
√

[K]o/5.4,

EK1 =
RT
F

ln

(

[K]o

[K]i

)

,

(time-independent potassium current),

IK p = 0.0183Kp(V − EK p), (plateau potassium current),

Ib = 0.03921(V + 59.87), (background current).

Detailed explanation of these equations is written in [20].
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Figure 1: Bifurcation diagram for coupled LR models.
CurvesI andD indicate period-doubling and pitchfork bi-
furcations, respectively. We observe in-phase 1-periodic,
anti-pahse 2-periodic, and in-phase 2-periodic solutionsin
gray, green, and hatched regions, respectively.
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(a) In-phase (two waveforms are identical)
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Figure 2: Waveforms of membrane potentials of two 2-
periodic solutions atGV = 0.1 and [K]o=7.2
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Figure 3: Schematic bifurcation diagram along curvel in
Fig. 1. Solid and dashed curves indicate stable and unsta-
ble solutions, respectively. Black and blue curves represent
in-phase solution. Red is used for anti-phase solution. So-
lution without symmetry are shown by green.
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Figure 4: Trajectories in (V1, V2) plave for two 2-periodic
solutinos. Arrows indicate the direction of trajectory. (a)
one trajectory atGV = 0.1 and [K]o=7.2, (b) two trajecto-
ries denoted black and red atGV = 0.1 and [K]o=6.9.
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