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Abstract—Electrical alternans is the alternating ampli-over, the intersection of the two period-doubling bifurca-
tude from beat to beat in the action potential of the cations occurs in a parameter plane, which is referred as a
diac cell. Spatial pattern of the alternans in the heart isodimension-three bifurcation, and the pitchfork bifurca
classified into two types: concordant and discordant altetions of a higher periodic solution appear [27].
nans. The former and latter indicate spatially uniform and Using the numerical bifurcation analysis method
nonuniform distribution of the alternans. In this study, wg28], we determined that the symmetry-preserving and
investigate bifurcations for a system of coupled two Luosymmetry-breaking period-doubling bifurcations gener-
Rudy models. As a result, we clarify the bifurcationalte the concordant and discordant alternans, respectively
mechanism of generating discordant alternans. Moreovéfioreover, we found the parameter region of coexistence
we determine existence of codimension-three bifurcatiorsf two kinds of alternans. Biexcitability was reported
related to generation of discordant alternans. [29, 30, 31], but these are for wave propagation in a two-
dimensionally coupled system. In this study, we showed
that the biexcitability is observed in a simpler system. We
consider that the study of a small number of coupled cells is

Electrical alternans is a beat to beat alternation in th%rototypeto study the whole network because some groups

action potential duration or amplitude of the cardiac Cel?omposed of synchronized cells can be treated as one cell.

1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13]. Alternans is o
classified into eight or more kinds in [2]. Occurrence?. Preliminaries
of the voltage or calcium-driven cellular alternans is ex-

plained by using action potential duration (APD) restiS: System Equations

tution, calcium dynamics, or voltage-calcium coupling, \ye se the LR model [20] for the sake of simplicity. The

which is the dynamics in cellular level. On the other handperiool of the external force (usually called “BCL": basic
the concordant and discordant alternans occur in tissi{é

1. Introduction

. cle length) is assumed to be 380 [ms]. The membrane
level. The former and latter corresponds to an in-pha

. X L tentialsV, andV; of coupled two LR models with the
and anti-phase synchronized solution in a system of co ynaptic external inputis described by

pled cells. The discordant alternans is related to QRS al-

ternans and triggers wave break and ventricular fibrilkatio dv;

(VF) [2, 14, 15, 16, 17, 18, 19]. The generation mechanism Cot = ~Uitlsn+Gi(Vi- Vo)) 1)
of the discordant alternans is usually explained by interac dv,

tion of APD and conduction velocity. However, the studies Tt = Uatlen+Gu(Va—Va)). @)
of the discordant alternans from the viewpoint of the dy- . o )
namical system is not clear as far as we know. and the type and the dynamics for ionic currdntge given

In this paper, we study a system of coupled two Luoln Appendix. The .syn_aptic curreiy, from the large cell
Rudy | (LR) neurons [20] with synaptic inputs. We assum&® the muscle cellis given by
that the signals from the pacemaker cell are normal. We lan = Gan(V — Van)S(t') (3)
investigate the generation mechanism of the discordant al- EARE A o ’
ternans in the system. In a previous study [21], we cIarifieg,h
that alternans is generated by the period-doubling bifurc?h
tion due to changing the value of free concentration of the
potassiumions in the extracellular compartmentfor the sin T t* t*
gle LR model. In general, considering a system of coupled s(t) = (_ exp( ) + exp( )) (4)
cells which have a period-doubling bifurcation, two types
of the period-doubling bifurcation: symmetry-preservingvherer; andr; are the raise and decay time of the synapse.
and symmetry-breaking appear [22, 23, 24, 25, 26]. MoréAfe identify these values{ = 5.5 andr, = 90.0[ms]) from

ereGgy, is the maximum synaptic conductandg, is
e reversal potential, arsft*) is given by

T2—T1 T1 T2
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the experimental data [32]t* is the time that is reset at 1) are called a codimension-three bifurcation. It is known
everynT (nis a natural number, antl is the BCL). We that pitchfork bifurcations of 2-periodic solutions appea
check the periodicity of the trajectory by using the statérom these points, those afbf to Dg. We explain the de-
variables at everyiT. The values of the parameters relatedailed bifurcation structure around this codimensiore#r
with the synapse are fixed &gy, = 4.0 andVsyn = —29.0.  bifurcation point using Fig. 3.

Figure 3 is a schematic diagram along cuhve Fig.
3.1. Symmetry 1. At the starting point of we observe stable in-phase 1-
periodic solution which corresponds to a normal state in
the cardiac system. Stable 2-periodic solutions synchro-
dx nized at anti-phase are generated@atThis solution (red

ot f(x), xeR () curve in Fig. 3) meets pitchfork bifurcatiob2 and be-

) _ ) ) comes unstable &. It disappears a®. The unstable
A system is called invariant with respectd®f a groupG  jn-phase 1-periodic solution (black dashed line) also meet

We assume that a system equation is described by

(or G-equivariant) if period-doubling bifurcation a® and unstable 2-periodic
solutions are generated. The stability turns to stabl@ at
9f(¥) = 1(9).vg € G. ©6) by pitchfork bifurcatiorD3. Thus, stable in-phase and anti-

phase 2-periodic solutions coexist betwé&and®@. This
region is shown as overlapping of green and hatched pat-
X® = {xe R": gx=xVge G} (7) teminFig. 1.
Figure 4 shows the fference between solutions denoted
The setX® is a linear subspace &". This subspace is an by red and green curves in Fig. 3 using the plavig V>).

The fixed-point subspacé® c R is defined as

invariant set of Eq. (5) [26, 33]. The diagonal lineV\{; = V,) represents the invariant sub-
Considering our systenm(= 16), the groufss is formed spaceX® given by Eq. (9). The trajectory of anti-phase
by (Fig. 4(a)) is symmetry with respect to the operatgpim

O|lsg

Eq. (8). On the other hand, we obtain another solution
G={g, 9= 510

by the operatiog for the solution without symmetry (Fig.

(8)

whereO andlg is zero and identity matrix, respectively. 4(b))-
The fixed-point subspacé® is given by

XC = (xe R gx = x. ) 5. Conclusion
We investigated a system of coupled Luo-Rudy mod-
We introduce the definitions of symmetric periodic soluy|s. We introduced symmetries for the system and its so-
tions [26]. lutions. Using them, we clarified period-doubling bifurca-
tions into two types: symmetry-preserving and breaking.
The concordant and discordant alternans are generated by
the symmetry-preserving and breaking period-doubling bi-

Definition 3.2 A periodic solution y(t) with (minimal) pe- ~ furcations, respectively. We determined the parameter re-
riod Ts is called anti-phaseif gion of coexistence of these two alternans.

Definition 3.1 A periodic solution y(t) is called in-phase
if gu(t) = y(t) forallte R

gy(t) = y(t+Ts/2) Acknowledgments

forallte R This work was supported by JSPS KAKENHI Grant

Number 15K00405. We thank Prof. T. Yoshinaga of
4. Results Tokushima University for providing his powerful bifurca-

. : . N . tion analysis tools.
We show a bifurcation diagram in Fig. 1. The negative y
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following currents:

= GnanThj(V — Ena), (sodium current)

= Ggidf(V-Eg), (slowinward current)

= GyXX(V - Ex),Gk = 0.282+/[K]0/5.4,

E | ([K]o + PRNaK[Na]o)

F [K]i + PRya[Na]; )’

(time-independent potassium current)

= Gx1Ky,(V — Ek1),Gk1 = 0.60474/[K]o/5.4,

RT ([Klo

= ()
(time-independent potassium current)

= 0.018Xp(V-Ekp), (plateau potassium current)

= 0.03921¥ +59.87), (background current)

Ex =

Detailed explanation of these equations is written in [20].



Figure 3: Schematic bifurcation diagram along culnie
0.0 1.0 Fig. 1. Solid and dashed curves indicate stable and unsta-
Gy—>=  [uS/em’] ble solutions, respectively. Black and blue curves represe
in-phase solution. Red is used for anti-phase solution. So-
Figure 1: Bifurcation diagram for coupled LR models.lution without symmetry are shown by green.
Curvesl andD indicate period-doubling and pitchfork bi-
furcations, respectively. We observe in-phase 1-perjodic
anti-pahse 2-periodic, and in-phase 2-periodic solutions
gray, green, and hatched regions, respectively.
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o Figure 4: Trajectories inM3, V>) plave for two 2-periodic
solutinos. Arrows indicate the direction of trajectory) (a
(b) Anti-phase V1 red, Vs: be[nnqu:eli]) one trajectory aGy = 0.1 and [Kp=7.2, (b) two trajecto-

ries denoted black and red@} = 0.1 and [K]p=6.9.

Figure 2: Waveforms of membrane potentials of two 2-
periodic solutions a6y = 0.1 and [Kjp=7.2
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