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Abstract– When we investigate the dynamics 
underlying a complex system where we can observe 
time series of several different components, we want to 
identify directional couplings between each pair of 
those components. In such a circumstance, we should 
not want to assume that the dynamics is linear or that 
all the components can be observed. Thus, here we 
propose a method for identifying directional couplings 
based on a joint distribution of distances. The proposed 
method will be easily extended to the analysis of point 
processes. 
 
1. Introduction 

There are various networked systems where each 
component of the systems may be coupled with others. 
For investigating such networked systems through the 
observations of some of these components, identifying 
directional couplings is the first thing we should do. By a 
directional coupling, we mean the influence that one 
component exerts upon another. Many methods have been 
proposed for identifying such directional couplings [1-7]. 
However, some common drawbacks are that (i) such 
methods assume the linearity of the underlying systems, 
(ii) such methods presume that one can observe every 
component in the networked systems, and (iii) such 
methods assume a family of models. 

To overcome these drawbacks, we proposed in 2010 a 
method for identifying directional couplings based on 
time series using recurrence plots [5]. Recently, we 
proposed two other methods for identifying directional 
couplings [8]. In addition, we proposed the simultaneous 
use of these three methods [8]. When evaluating 
individual performances of the three methods, we found 
that one of the methods using the joint distribution of 
distances outperforms the other two methods. Thus, in this 
presentation, we focus on the joint distribution of 
distances for a pair of states of components to identify 
directional couplings. 
 
2.  Backgrounds 
2.1. Takens’ theorem 

Suppose that we are interested in a dynamical system 
MMf →: on a m-dimensional manifold M  

described by )(1 ii xfx =+  for 0≥i  given an initial 

condition Mx ∈0 . Let us assume that we can only 

observe a scalar value )()( ix xgis =  through an 

observation function RMg →: . This poses the 

problem of how to recover the information of ix  by using 

the limited information of }0|)({ ≥iisx . 
To resolve this problem, the key idea is to use delay 

coordinates, which were proposed by Takens [9].  Given 
}0|)({ ≥iisx , delay coordinates corresponding to ix  

can be defined by 
( ).)1(),...,1(),()()( −++== disisisxHis xxxixx


 

Takens  [9] showed that if md 2> , it is a generic 
property that  the relation between ix  and )(isx


 is one-

to-one. Therefore, in such a case, the following diagram 
commutes: 
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By using the delay coordinates, we can reconstruct a 
dynamical system that is equivalent to the original 
dynamics f . Thus, even if we can neither observe ix  nor 

know the original dynamics f , we can learn the 

underlying dynamics and even predict the future of xs  by 

f~ . 
 
2.2. Stark’s theorem 

The above theorem by Takens has been extended by 
Stark to the forced system [10]. Mathematically, a setting 
for a forced system can be written as follows: We have 
two dynamical systems MMf →:  and 

NNMg →×: , where M and N  are manifolds of 
m and n  dimensions, respectively. Therefore, the first 
system f  is an autonomous system, while the second 
system g  is forced by the input of the first system. In 
what follows, we use the following notations for 
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describing states for these systems: 
),(),( 11 iiiii yxgyxfx == ++  for 0≥i . 

Suppose that we do not have access to the first system 
and we can observe a scalar value )()( iyy yhis =  
depending only on the state for the second system. 
Similarly, we construct delay coordinates by 

( ).)1(),...,1(),(),()( −++== disisisyxHis yyyiiyy


Then it is a generic property that if )(2 nmd +> , the 

joint set of ),( ii yx  and )(isy


 are one-to-one on the 
attractor [10]. This theorem means that in the forced 
system, we can reconstruct the information of not only the 
forced system but also the driving force. 

 
2.3. A method using recurrence plots for inferring 
directional couplings 

The first person who used the above Stark’s theorem in 
an application is Timothy D. Sauer [11]. He assumed that 
one can observe several forced systems and proposed how 
to reconstruct the common driving force. 

The second application of Stark’s theorem is by two of 
us for inferring directional couplings [5]. We used an 
implication of Stark’s theorem for denying the existence 
of a directional coupling. Let us compare two sets of delay 
coordinates )(isx


 and )(isy


. When the system of 

f drives the system of g as defined as above and d  is 

sufficiently large, )(isx


 is one-to-one with ix , while 

)(isy


 is one-to-one with ),( ii yx . Hence, if two sets of 

delay coordinates )(isy


 and )( jsy


 are close to each 

other, ),( ii yx  and ),( jj yx  are close to each other. This 

relation means that ix  and jx  are close to each other, 

implying that )(isx


 and )( jsx


 are close to each other. 
To infer the directional coupling, Ref. [5] used the 

contraposition of the above relation: Namely, if )(isy


 

and )( jsy


 are close to each other while )(isx


 and 

)(isx


 are not close to each other, then we can deny a 
directional coupling  from a system described by x  to a 
system described by y . In Ref. [5], this statement is 
tested by using recurrence plots [12]. 
 
3. The proposed method 
3.1. Joint distribution of distances for identifying 
directional couplings 

Similarly to Ref. [5], we used Stark’s embedding 
theorem for inferring directional couplings [8]. This time, 
we interpret the theorem more straightforward. 

When we use Stark’s embedding theorem, if the system 
described by x  drives the system described by y , and 

)(isy


 and )( jsy


 are close to each other, in other words, 

)(isy


 and )( jsy


are neighbors, then )(isx


 and )( jsx


 
are also neighbors. Therefore, if we evaluate the similarity 
between )(isy


 and )( jsy


, and the similarity between 

)(isx


 and )( jsx


 by the corresponding distances, these 
distances can be plotted in a two-dimensional space as 
shown in Fig. 1 and can occupy the triangle region as 
shown by red in Fig. 1. This is the idea we would like to 
use here for inferring a directional coupling from a system 
to another. 
 

 
Fig. 1. The distance between )(isx


 and )( jsx


 and the 

distance between )(isy


 and )( jsy


. 
 
3.2. Implementation 

In Ref. [8], we proposed the following implementation 
for inferring directional couplings using the above idea: 
First, we calculate the Euclidean distances between every 
pair of embedded state vectors for the system described by 
x  and those for the system described by y . Second, we 
convert the distributions of distances so that the distances 
have the uniform distributions between 0 and 1 (Thus, we 
may not be able to call them as distances strictly anymore). 
Third, we divide the axis of the distances for x  uniformly 
into B2  bins. For each bin b , we find the minimum 
distance  )(bDy  for y . Lastly, we evaluate the 
distribution of 

{ }BbbDbBD yy ,...,2,1|)()( =−+=D . Therefore, 
this distribution is expected to be biased towards the 
positive side if there is a directional coupling from x to 
y and the joint distribution of distances looks like one in 

Fig. 1. Thus, we construct a one-sided t-test based on the 
null hypothesis that the mean of ∆  is zero. If this 
distribution can reject the null hypothesis, then we declare 
that there is a directional coupling from the system 
described by x  to the system described by y .  
 
4. Examples 
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In Ref. [8], we compared the above method of joint 
distribution of distances with other methods. But, here we 
only show the results of the above method because the 
space of this proceedings is limited. For detailed 
comparisons of the methods, see Ref. [8]. The p-values 
shown below are the p-values obtained by the above t-test 
discussed in Section 3.2. 
 

 
Fig. 2. Coupling configurations considered in Sections 4.1 
(A), 4.2 (B) and 4.3 (C). 
 
4.1. Mutually coupled logistic maps 

First, we tested the above method using mutually 
coupled logistic maps (Fig. 2A). We varied the coupling 
strengths between 0 and 0.2, and generated a time series 
of length 1000 for each pair of coupling strengths.  

 
Fig. 3. Results for tests for inferring directional couplings 
given time series generated from mutually coupled 
logistic maps. In each panel, the gray scale shows the 
logarithm of the p-value with base 10. 

 
Fig. 4. Example for joint distribution of distances. Here 
we used a logistic map (driver) unidirectionally driving 
another (driven system). This example corresponds to 

0=yxη   and 15.0=xyη  of Fig. 3. 
 

The results are summarized in Fig. 3. The proposed 
method could properly infer the directional couplings if 
the coupling strength is modest or stronger, and the 
opposite coupling strength is not too strong. In addition, 

we show an example of joint distribution of distances in 
Fig. 4. 
 
4.2. Logistic maps driven by another 

Second, we tested the proposed method using logistic 
maps driven by another logistic map (See Fig. 2B). Here 
we assume that the two logistic maps we can observe are 
not coupled. The other simulation conditions are similar to 
the first example. 

The results are shown in Fig. 5. We can see that the 
proposed method was not influenced by the common 
hidden driver. Thus, it seems that the proposed method 
does not induce false positive results, under which we 
declare, due to the influence of the common hidden driver, 
that there exists directional couplings between observed 
systems. This point means that the proposed method has a 
nice property that most of the existing methods do not 
have. 

 
Fig. 5. Results of tests for inferring directional couplings 
given time series generated from two logistic maps driven 
by another logistic map. Here, the two logistic maps we 
can observe do not have direct couplings. See the caption 
of Fig. 3 for the interpretations. 
 
4.3. Mutually coupled logistic maps driven by another 

Third, we attempt to infer directional couplings under 
the existence of a common hidden driver (see Fig. 2C). 
Here, we also use logistic maps. The other simulation 
conditions are similar to the previous cases. 

   
Fig. 6. Results for tests for inferring directional couplings 
given time series generated from mutually coupled 
logistic maps driven by another. See the caption of Fig. 3 
for the interpretations. 
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The results are shown in Fig. 6. These results look 
similar to Fig. 3. Namely, the proposed method can work 
well and infer directional couplings even if there is a 
common hidden driver. 
 
5. Discussions 

We have proposed a method for inferring a directional 
coupling based on time series. Our method uses Stark’s 
embedding theorem and infers a directional coupling 
using the joint distribution of distances. The method 
seems to work properly even if there exists a common 
hidden driver. Therefore, we do not have to be able to 
observe the entire components of a network system when 
we investigate its topology. 

In Ref. [8], we also demonstrated that the proposed 
method works well even if the length of time series is 250, 
showing examples based on real data. The strength of the 
proposed method is that we use distances. Therefore, in 
Ref. [8], we applied our method for irregularly sampled 
data. Being able to obtain distances is a common 
condition for nonlinear time series analysis of exotic data 
such as a time series of network [13] and marked point 
processes [14-17]. Therefore, we believe that by 
combining with other methods, the proposed method will 
help us to study multivariate time series data. 
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