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Abstract—We introduce a method for constructing net-
works from multivariate nonlinear time series from a deter-
ministic dynamical systems perspective. The method can
be applied even when the data exhibit no obvious qualita-
tive similarity: a situation in which the naive method utilis-
ing the cross correlation function directly cannot correctly
identify connectivity. The method is demonstrated for nu-
merical data sets generated by known systems and applied
to several experimental time series.

1. Introduction

To understand the nature of ongoing interaction in real-
world complex systems it is first necessary to deduce the
interconnection between the components of the system (or
underlying system) under study [1]. Elements in the system
interact with each other. Once the connectivity has been de-
termined the effect of that connectivity is frequently studied
using the concept of complex networks [2].

There are also approaches for constructing networks for
multivariate time series [3, 4]. In these approaches each
time series is considered as a basic node of a network.
Nodes are connected if the dynamics of the corresponding
scalar time series are sufficiently similar. The naive (and
usual) way to measure “similarity” between two signals
is with the cross correlation function with a fixed thresh-
old [3, 4]. While this naive approach is expeditious, it is
also flawed when one is looking at nonlinear (possibly tem-
porally delayed) interaction in complex systems (in other
words, two signals are not similar). We describe the naive
approach in detail in Sec. 2.

The most important thing to investigate the relation-
ship between two signals is not similarity but correlation
structures from the viewpoint of a deterministic dynamical
system. Recently a method to construct such a network
for multivariate nonlinear time series has been proposed
based on this perspective [5]. To verify the intrinsic (es-
sential) connection between two data sets, the previously
proposed small shuffle surrogate (SSS) method is applied
in the method, which can investigate correlation structures
irrespective of whether the structures are linear or nonlin-

ear [6]. That is, the method constructs networks for multi-
variate time series, even if there are nonlinearities in these
time series.

2. The naive approach to network construction

The most extensively used method to construct networks
for multivariate time series can be reduced to the following
three steps [3, 4].

1. Each time series is considered as a basic node of a
network.

2. To investigate the relationship among multivariate
time series, the cross correlation between each pair of
time series (i.e. two time series) taken from the whole
multivariate time series is estimated.

3. The pair of nodes corresponding to the chosen two
time series is connected with an undirected edge when
the value of the cross correlation is larger than an ap-
propriately chosen threshold.

We refer to this method as “the naive method.” The basic
idea behind the naive method is as follows. When signals
are similar, we expect that there may be some sort of rela-
tionship between the corresponding nodes, and hence the
pair is considered to be connected with an undirected link.
On the other hand, there are cases where time series are not
similar enough. In this case, as we may have the impres-
sion that these are independent or have no relationship, we
do not connect them. This approach relies on one select-
ing an appropriate threshold. Although the naive method
has been proved to be effective in various cases [3, 4], the
range of applicability might be restrictive because “no sim-
ilarity” is not equivalent to “no correlation” and “no rela-
tionship” [6]. Furthermore, there is a possibility that “sim-
ilarity” might not be equivalent to “relationship.” That is,
the naive method cannot deal with data appropriately espe-
cially when there are nonlinearties. In the next section, we
describe an approach to reduce this problem.
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3. A different approach to construct networks

The approach of the proposed method is basically the
same as the naive method described in Sec. 2. The differ-
ence is the way of verifying the connection between two
data sets. As mentioned above, only the cross correlation
function is used in the naive method. To determine whether
two nodes should be connected statistically and to make the
result rigorous, we apply the small shuffle surrogate (SSS)
method [6], because the SSS method has broad applicabil-
ity1 and can examine whether there are correlation struc-
tures2.

3.1. The small-shuffle surrogate method

To investigate whether temporal correlations in time
series data are absent or if the data are independently
distributed random variables, the SSS method is often
used [6]. The SSS method destroys local structures or cor-
relations in irregular fluctuations (short-term variabilities)
and preserves the global behavours by shuffling the data
index on a small (local) scale.

SSS data are generated as follows. Let the original data
be x(t), let i(t) be the index ofx(t) [that is, i(t) = t, and so
x [i(t)] = x(t)], let g(t) be Gaussian random numbers and
s(t) will be the surrogate data.

(i) Obtaini′(t) = i(t) + Ag(t), whereA is an amplitude.

(ii) Sort i′(t) by the rank-order and let the index ofi′(t) be
î(t).

(iii) Obtain the surrogate datas(t) = x
[

î(t)
]

.

It has been found that choosingA = 1.0 is adequate for
nearly all purposes [6] — although this parameter choice
remains heuristic. Further details of the method and the
mechanism are provided in [6]. When we apply the SSS
method to multivariate data, the null hypothesis (NH) is
that there is no short-term correlation structure between the
data or that the irregular fluctuations are independent [6].

3.2. When to reject a null hypothesis

Discriminating statistics are necessary for surrogate data
hypothesis testing. The SSS method changes the flow of
information in the data. It is preferable to use discrim-
inating statistics which can accurately reflect features of
the surrogate method. Hence, we choose to use the cross
correlation (CC) function and the average mutual informa-
tion (AMI) as discriminating statistics. These statisticscan
determine, on average, how much one learns about one sig-
nal by observing the other [7].

1The SSS method can investigate whether there are correlationstruc-
tures in short-term variabilities among data, irrespectiveof whether data
have similar or different long-term trends.

2The term “correlation structures” we use means any structures, irre-
spective of whether the structures are linear or nonlinear.

After the calculation of these statistics, we need to de-
termine whether a null hypothesis (NH) should be rejected.
We employ Monte Carlo hypothesis testing and determine
whether the estimated statistics of the original data fall
within or outside the statistical distribution of the surrogate
data [8]. When the statistics fall within the distributions
of the surrogate data, we conclude that the hypothesis may
not be rejected. In this paper, we generate 99 SSS data and
hence the non-parametric significance level is between 0.01
and 0.02 for a one-sided test with two non-independent
statistics3.

4. Numerical Example

We demonstrate the application of our algorithm to one
simulated multivariate time series data set, and confirm our
theoretical arguments with the several example. For com-
parison we also apply the naive method to the data sets. In
this case, we useA = 1.0 for generating SSS data, gener-
ate 99 SSS data, and the data is 1000 points with Gaussian
observational noise with the mean zero and the standard
deviation 0.01.

4.1. Data from a nonlinear system

To investigate whether the proposed method works even
if there is nonlinearity, we use the system which consists of
four dynamical variables,x1(t), x2(t), x3(t), andx4(t), and
the models are described by the following expressions:

x1(t) = 1.3+ 0.2 x1(t − 1)− 0.1 x1(t − 3)

+ 0.1 x2(t − 4)x4(t − 7)+ ε1(t), (1)

x2(t) = 2.0+ 0.6 x2(t − 1)− 0.2 x2(t − 6)+ ε2(t), (2)

x3(t) = h
[

2.2+ 0.2 x1(t − 2)+ 0.3 x4(t − 9)+ ε3(t)
]

, (3)

x4(t) = 1.3+ 0.2 x1(t − 2)+ 0.5 x4(t − 1)

− 0.3 x4(t − 3)+ ε4(t), (4)

whereεi(t) (i = 1,2,3,4) are dynamic noise, independent
and identically distributed Gaussian random variables with
mean zero and standard deviation 1.0. The functionh(x) is
a static monotonic nonlinear function [9],

h(x) =
5.0
[

x−a−0.0001
b−x+0.0001

]ρ

1+
[

x−a−0.0001
b−x+0.0001

]ρ
, (5)

whereρ = 3, a = −2.0 andb = 10.0. The behavours of the
four time series generated by these models are shown in
Fig. 1. The behavours show irregular fluctuations and it is
difficult to know the relationship among the data by visual
inspection.

3The significance level of each test is 0.01. If two statisticsare iden-
tical (dependent), the significance level for the proposed test is 0.01. If
the statistics are independent, the significance level for the test is given
by 1.0 − 0.99× 0.99 = 0.0199. Hence, the reality should be somewhere
in-between [6].
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Figure 1: Time series data generated by the nonlinear sys-
tem, Eqs. (1)–(4). We use the data to construct the network.

In this paper, we distinguish between “component”
and “variable” as different technical terms. We use the
term “component” to representxi, and the term “variable”
when it takes a particular valuexi(t−l). We treat the compo-
nents as the nodes of the network. That is, Eq. (1) has three
components (x1, x2 and x4) and four variables,x1(t − 1),
x1(t− 3), x2(t− 4), andx4(t− 7). As shown in Eqs. (1)–(4),
each dynamical variable at timet is determined by various
other dynamical variables. We consider the connectivity of
the linear system, Eqs. (1)–(4). Eq. (1) shows that the com-
ponentx1 is influenced by three components,x1, x2 and
x4. That is, other components which connect the compo-
nent x1 are x2 and x4. Similarly, as Eq. (2) shows thatx2

is driven by onlyx2, there is no connection withx2. As
Eq. (3) shows thatx3 is driven byx1 andx4, x1 andx4 con-
nectx3. As Eq. (4) shows thatx4 is driven byx1 andx4, x1

connectsx4. Based on this, the connectivity expressions of
the nonlinear system become

x1 = f1(x2, x4), (6)

x2 = 0, (7)

x3 = f3(x1, x4), (8)

x4 = f4(x1), (9)

where fi stands for the function representing connectivity
of the i-th component,xi, and zero means that there is no
connection. The network structure constructed based on
this idea is shown in Fig. 2(a).

We estimate the cross correlation function to apply to
the naive method. All the values are shown in Table 1.
We need to determine the fixed threshold value to decide
whether a link is present between two components. If we
set the value 0.5, as shown in Table 1, we cannot connect
any link between nodes. The network structure constructed
by the naive method is shown in Fig. 2(b), and Fig. 2(b)
shows that there is no link among any node on this net-
work. However, we note that as Eqs. (1)–(4) show, there
are correlation structures among the components. This re-
sult clearly indicates that only the application of the cross
correlation function is not effective.

We apply the SSS method to the data of all possible pairs

(a) (b)

Figure 2: (Colour online) The linkage of network: (a) the
connectivity of Eqs. (1)–(4). The same network is obtained
when the proposed method is applied to the data shown in
Fig. 1. (b) the network when we apply the naive method to
the data. As shown in this figure, there is no link among
the nodes.

Table 1: The largest absolute values of the cross correlation
function of all possible pairs between the time lag−10 and
+10, where the number in parentheses is the time lag when
the cross correlation function has the largest absolute value.
The data are generated by the nonlinear system, Eqs. (1)–
(4), and the values are estimated using 1000 data points.

x1 x2 x3 x4

x1 1.0000 — — —
x2 0.3413 (-4) 1.0000 — —
x3 0.3337 (2) 0.0688 (6) 1.0000 —
x4 0.4113 (-7) 0.0725 (8) 0.3906 (-9) 1.0000

(a) −10 −5 0 5 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time lag

C
C

(b) −10 −5 0 5 10
2.2

2.3

2.4

Time lag

A
M

I

(c) −10 −5 0 5 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time lag

C
C

(d) −10 −5 0 5 10
2.2

2.3

2.4

Time lag

A
M

I

Figure 3: (Colour online) The result of nonlinear system,
Eqs. (1)–(4). A plot of (a) and (c) the cross correlation
function (CC), and (b) and (d) the average mutual informa-
tion (AMI), (a) and (b) are result ofx1 andx2, and (c) and
(d) are result ofx2 andx3, The solid line is the original data
and the dotted lines are the SSS data.

to verify the connection between two data sets. Figure 3
shows the result. This result indicates that we can discrim-
inate correctly whether there are correlation structures be-
tween two signals. Also, other data sets are discriminated
correclty. Based on this we can construct the same network
as shown in Fig. 2(a).
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Figure 4: Hourly meteorological time series in Kobe, Japan
from 1 January to 28 February in 2013 (1416 data points):
(a) atmospheric pressure, (b) temperature, (c) dew-point
temperature, (d) vapour pressure, and (e) humidity.

5. Application

Based on the results of the computational studies, we
apply the proposed method to one experimental system:
hourly meteorological time series data set in Kobe, Japan.
The meteorological time series data set are five different
time series: the atmospheric pressure, the temperature, the
dew-point temperature, the vapour pressure and the humid-
ity taken hourly in Kobe, Japan from 1 January to 28 Febru-
ary in 20134. As shown in Fig. 4, each of them shows ir-
regular fluctuations. We use 1416 data points for a meteo-
rological time series data set. In all cases we useA = 1.0,
generate 99 SSS data and estimate the CC function and the
AMI between the time lag−10 and+10.

Figure 5 shows networks constructed by the naive
method and the proposed method. There are interesting
differences between them. The CC functions between the
temperature and the dew-point temperature and between
the temperature and the vapour pressure are larger than 0.5.
Hence, these are connetced as shown in Fig 5(a). However,
as the CC and AMI of the original data fall within the dis-
tributions of SSS data, these are not connected as shown in
Fig 5(b). This might indicate that “similarity” is not equiv-
alent to “relationship.”

6. Conclusion

We have introduced an algorithm to construct networks
for multivariate time series using the SSS method. The net-
work constructed by the method indicates the intrinsic con-
nectivity of the elements included in the system.
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