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Abstract—Genetic Algorithm (GA) is actively applied
to real-world problems. Most of these real world prob-
lems are constrained optimization problems which opti-
mize objective functions while satisfying constraints. In
constrained optimize problems, the constraints need to be
determined whether each of them is satisfied or not, which
is regarded as a two-class classification. Therefore, the per-
formance of GA for constrained optimization problems can
be improved by classifiers as the approximation of con-
straints. In this paper, the approximation method of ob-
jective functions and constraints using Multiple Regression
Analysis was applied to five benchmark problems as an
introduction to the classification of constraints and stud-
ied the improvement of the performance of search in con-
strained optimization problems.

1. Introduction

Genetic Algorithm (GA) is actively applied to real-world
problems such as the design of front nose of N700, the
design of aircraft wing of MRJ, and Nurse Scheduling
Problem[2][3][4]. Most of these real world problems are
constrained optimization problems which optimize objec-
tive functions while satisfying constraints. In the conven-
tional GA researches, it has been reported that the perfor-
mance of search can be improved by approximation of ob-
jective functions[5][6]. However, the approximation of fit-
ness values of objective functions requires high approxi-
mation accuracy and it takes many individuals and actual
evaluations as the information of approximation. There-
fore, it is difficult to apply it, or it does not show high
performance in real-world problems. On the other hand,
constraints need to be determined whether each of them is
satisfied or not, which is regarded as a two-class classifica-
tion. And usually all of the constraints have to be satisfied.
This paper studies the improvement of the performance of
search in constrained optimization problems using Multi-
ple Regression Analysis[1] as an introduction to approxi-
mation of constraints.

2. Proposed method

In GA, actual evaluation is generally required to acquire
the fitness value(s) of objective function(s) and whether it

violates constraint(s) for each generated offspring. Thus,
offsprings which have worse fitness value(s) of objec-
tive function(s) than those of their parents or violate con-
straint(s) can be generated and that leads a waste of search.
Therefore, in the proposed method, only offsprings which
have better fitness value(s) than their parents and do not vi-
olate any constraints are generated based on Multiple Re-
gression Analysis (MRA) and actual evaluation are done
for them to improve the performance of search. In the pro-
posed method, the crossover of same parents is repeated
until the offsprings described above are generated or the
number of crossover reaches the upper limit. The proce-
dures of usual GA and the proposed method are shown in
Fig.1.

3. Experiment

In this paper, the conventional method and the proposed
method were applied to five benchmark problems (CF1 to
CF5) which were employed for Multi-objective Optimiza-
tion Test Instances for the CEC 2009 Special Session and
Competition[7]. All of these benchmark problems, CF1
to CF5, are constrained optimization problems having one
constraint and two objective functions. The details of these
benchmark problems are shown in Table 1. The number
of evaluations was 300,000 which was the condition used
for the competition. In this experiment, the population size
was 300 and the search was ended at 1,000th generation.
In the proposed method, the upper limit of the number
of crossover by same parents was 100 and the regression
equations for the objective functions and constraint were
calculated by newly obtained individuals at each genera-
tion.

The individuals satisfying the constraint for each bench-
mark problem are shown in Fig.2 to Fig.6. In all bench-
mark problems, the performance of the proposed method
which uses MRA to approximate the objective functions
and constraint was worse than that of the conventional GA.
It is supposed that the worse performance of the proposed
method was caused by the insufficiency accuracy of the ap-
proximation by MRA. The actual evaluated fitness values
and the approximated values of the objective functions and
constraint are shown in Fig.7 to Fig.11. The gradational
color of each point in the figures is correspond to the gen-
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eration, which changes from red (first generation) to blue
(last generation). These figures show that the accuracy of
the approximation was lower especially in early genera-
tions and it made the performance of the search worse. Be-
cause the more the search was conducted, individuals were
more converged, it is thought that the accuracy of the ap-
proximation became better in later generations. However,
remarkable inclinations of this accuracy improvement were
not observed in these experiments. It cannot be denied that
is the limit of a linear approximation method. In addition,
as shown in Fig.7, extremely small approximated values by
MRA was observed in CF1. It is supposed that was caused
by the multicollinearity.

4. Conclusion

This paper studied the improvement of the performance
of search in constrained optimization problems using Mul-
tiple Regression Analysis as an introduction to approxima-
tion of constraints. The proposed method which approxi-
mates objective function and constraints by MRA and gen-
erates offsprings by crossover considering them was ap-
plied to five constrained optimization problems and com-
pared with the conventional GA. As the result, the perfor-
mance of the proposed method was worse than that of the
conventional GA. It was supposed that the low performance
was caused by the insuficiency accuracy of the approxima-
tion by MRA especially in early generations. We will study
on the approximation method for objective functions and
constraints considering the convergence of individuals. We
will also study on nonlinear approximation methods for the
approximation.
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Table 1: Benchmark problems

CF1
f1(x) = x1 +

2
|J1 |
∑

j∈J1
(x j − x

0.5(1.0+ 3( j−2)
n−2 )

1 )2 a = 1

f2(x) = 1 − x1 +
2
|J2 |
∑

j∈J2
(x j − x

0.5(1.0+ 3( j−2)
n−2 )

1 )2 N = 10
1 − f1 − f2 + a| sin(Nπ( f1 − f2 + 1))| ≤ 0 n = 10

CF2

f1(x) = x1 +
2
|J1 |
∑

j∈J1
(x j − sin(6πx1 +

jπ
n ))2 a = 1

f2(x) = 1 − √x1 +
2
|J2 |
∑

j∈J2
(x j − cos(6πx1 +

jπ
n ))2 N = 2

t
1+e4|t| ≤ 0 n = 10
t = 1 −

√
f1 − f2 + a sin(Nπ(

√
f1 − f2 + 1))

CF3

f1(x) = x1 +
2
|J1 | (4

∑
j∈J1

y j
2 − 2

∏
j∈ j1 cos( 20y jπ√

j )) a = 1

f2(x) = 1 − x1
2 + 2

|J2 | (4
∑

j∈J2
y j

2 − 2
∏

j∈ j2 cos( 20y jπ√
j )) N = 2

y j = x j − sin(6πx1 +
jπ
n ) ( j = 2, ..., n) n = 10

1 − f12 − f2 + a|sin(Nπ( f12 − f2 + 1))| ≤ 0

CF4

f1(x) = x1 +
∑

j∈J1
h j(y j) n = 10

f2(x) = 1 − x1 +
∑

j∈J2
h j(y j)

y j = x j − sin(6πx1 +
jπ
n ) ( j = 2, ..., n)

h2(t) =
{
|t| (t < 3

2 (1 −
√

2
2 ))

0.125 + (t − 1)2 (otherwise)
hJ(t) = t2 ( j = 3, 4..., n)

t
1+e4|t| ≤ 0
t = −0.25 + 0.5x1 − x2 + sin(6πx1 +

2π
n )

CF5

f1(x) = x1 +
∑

j∈J1
h j(y j) n = 10

f2(x) = 1 − x1 +
∑

j∈J2
h j(y j)

y j =

{
x j − 0.8x1 cos(6πx1 +

jπ
n ) ( j ∈ J1)

x j − 0.8x1 sin(6πx1 +
jπ
n ) ( j ∈ J2)

( j = 2, ..., n)

h2(t) =
{
|t| (t < 3

2 (1 −
√

2
2 ))

0.125 + (t − 1)2 (otherwise)
hJ(t) = 2t2 − cos(4πt) + t ( j = 3, 4..., n)
−0.25 + 0.1x1 − x2 + 0.8x1 sin(6πx1 +

2π
n ) ≤ 0

J1 = { j| j is odd and 2 ≤ j ≤ n}
J2 = { j| j is even and 2 ≤ j ≤ n}
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(a) Conventional GA

(b) Proposed method

Figure 1: Procedure of GA

(a) Conventional GA (b) Proposed method

Figure 2: Result of CF1

(a) Conventional GA (b) Proposed method

Figure 3: Result of CF2

(a) Conventional GA (b) Proposed method

Figure 4: Result of CF3

(a) Conventional GA (b) Proposed method

Figure 5: Result of CF4

(a) Conventional GA (b) Proposed method

Figure 6: Result of CF5

(a) Objective function： f1 (b) Objective function： f2

(c) Constraint
Figure 7: Accuracy of CF1
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(a) Objective function： f1 (b) Objective function： f2

(c) Constraint
Figure 8: Accuracy of CF2

(a) Objective function： f1 (b) Objective function： f2

(c) Constraint
Figure 9: Accuracy of CF3

(a) Objective function： f1 (b) Objective function： f2

(c) Constraint
Figure 10: Accuracy of CF4

(a) Objective function： f1 (b) Objective function： f2

(c) Constraint
Figure 11: Accuracy of CF5
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