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Abstract—In this study, simple nonlinear dynamical
systems are made robust against undesirable bifurcation
and unstable states using a downhill simplex method,
which is widely used in the optimization problem. The
proposed method is based on the concept of robust bifur-
cation analysis; namely, a stability index defined for each
parameter value is updated so as to optimize the index. The
optimization method is verified through numerical experi-
ments. The presented results can be generalized for driving
a system to avoid chaos.

1. Introduction

In a previous study, robust bifurcation analysis was pro-
posed for automatically determining system parameters
[1]. The method used the maximum absolute number of
eigenvalues of the linearized dynamics at the considered
fixed point as a stability index. By minimizing the stability
index, we could determine the optimum system parame-
ters for system robustness. The robust bifurcation analysis
is the method that uses the qualitative bifurcation theory
based on the dynamical systems theory and the optimiza-
tion of a performance index in the control theory. How-
ever, the stability index is not differentiable with respect to
the parameter. In order to solve this problem, the matrix
inequality method [2, 3] was proposed, which was based
on the control theory. In this direct approach, optimization
is achieved with the nonlinear matrix inequality constraint.
The objective function and the constraint condition should
be smooth with respect to system parameters because the
optimization requires the steepest descent direction or the
Newton direction of the objective function.

In the present study, we adopt the downhill simplex
method [4] to solve the optimization problem with the sta-
bility index based on the local expansion rate. This method
offers solutions for nonlinear optimization problems, and
it does not require differentiability for objective functions
because parameters are updated by using objective func-
tions geometrically. Here, we show the results of apply-
ing this the method to Hénon map and Kawakami maps,
which are known as two-dimensional discrete-time dynam-
ical systems. Furthermore, we demonstrate that we can
avoid the chaos observed in these systems and find the pa-

rameters for the systems having high stabilities.

2. Stability optimization problem

Now we consider the discrete-time dynamical system de-
scribed as follows:

f : Rn × Rm → Rn

(x(k), λ) 7→ x(k + 1) = f (x(k), λ), (1)

where λ ∈ Rm is a set of system parameters, and x(k) ∈ Rn

denotes internal state variables. k denotes a discrete-time
step．The fixed point x∗ of map f satisfies x∗ = f (x∗, λ).
The Jacobian matrix D f (x, λ) of the map f with respect to
the fixed point x∗ is defined by

D f (x, λ):=
∂

∂x
f (x, λ)

∣∣∣∣∣
x=x∗
. (2)

As for the stability of non-periodic points x0 of the map
f , we regard x0 as an N-periodic point, and we use the
finite-time Lyapunov exponent, or the local expansion rate,
defined by

γ(N, x0, λ):=
1
N

log ∥D f N(x0, λ)∥, (3)

for the minimization problem described by

min
λ∈Rm
γ(N, x0, λ), (4)

where D f N(x0, λ) is the Jacobian matrix of the N-times
map of the map f (x0, λ).

3. Optimization with downhill simplex method

In this study, we use the downhill simplex method to
solve optimization problems. The method uses a simple
algorithm and does not require a derivative function to op-
timize the parameters. Therefore, we can use this method
for the optimization of non-differentiable objective func-
tions. The algorithm is concretely described as follows:
First, consider an (m + 1)-polyhedron, whose vertices are
corresponding to the parameters in the m-dimensional para-
metric space. Then, update those vertices iteratively to
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Figure 1: Algorithm of the downhill simplex method.

minimize the objective function and converge the objec-
tive function to the appropriate value. In this session, the
algorithm of the downhill simplex method with m = 2 is
summarized.

3.1. Algorithm of downhill simplex method

Let a and b stand for the search parameters with m = 2.
In Fig. 1(A), λ j, j = 1, 2, and 3 denotes the search points,
and λr stands for a reflection point of one of these search
points on the (a, b)-parameter plane. γ j, j = 1, 2, and 3,
and γr are the stability indexes, i.e., the local expansion
rates at λ j, j = 1, 2, 3 and λr, respectively. The reflection
point λr is obtained under the point reflection, in the mid-
point between λ1 and λ2, when γ1 < γ2 < γ3 is satisfied.
Note that a larger stability index corresponds to a smaller
local expansion rate because they have opposite directions.
Algorithm 1 shows the algorithm of the downhill simplex
method used in this study. θ indicates the threshold for the
stability indexes, and the function swap returns the parame-
ters sorted by the descending order in the stability indexes,
which is in the ascending order with respect to γi.

3.2. Application to discrete-time dynamical systems

The method was applied to 2-dimensional discrete-time
dynamical systems, Hénon map and Kawakami map. The
dynamics of Hénon map is described by(

x(k + 1)
y(k + 1)

)
=

(
1 + y(k) − ax(k)2

bx(k)

)
, (5)

and Kawakami map is described by(
x(k + 1)
y(k + 1)

)
=

(
ax(k) + y(k)

x(k)2 + b

)
, (6)

Algorithm 1 The downhill simplex method with m = 2
Require: γ1 < γ2 < γ3
Ensure: γ3 < θ

while (γ3 > θ) do
if γr < γ1 then

Expand λr to the opposite direction from λ3, and let
the point be λ′r. (Fig. 1(B))
if γ′r < γr then

(λ1, λ2, λ3) = swap(λ1, λ2, λ′r)
else

(λ1, λ2, λ3) = swap(λ1, λ2, λr)
end if

else if γ1 ≤ γr < γ2 then
(λ1, λ2, λ3) = swap(λ1, λr, λ2)

else if γ2 ≤ γr < γ3 then
Contract λr to the direction to λ3, and let the point
be λ′r. (Fig. 1(C))
if γ′r < γr then

(λ1, λ2, λ3) = swap(λ1, λ2, λ′r)
else

Contract λ2 and λr to the direction to λ1. Let
those points be λ′2 and λ′r1. (Fig. 1(C))
(λ1, λ2, λ3) = swap(λ1, λ′2, λ′r1)

end if
else if γ3 ≤ γr then

Contract λ3 to the direction of the midpoint between
λ1 and λ2, and let the point be λ′3. (Fig. 1(D))
if γ′3 < γ3 then

(λ1, λ2, λ3) = swap(λ1, λ2, λ′3)
else

Contract λ2 and λ3 to the direction to λ1. Let
those points be λ′2 and λ′31. (Fig. 1(C))
(λ1, λ2, λ3) = swap(λ1, λ′2, λ′31)

end if
end if

end while

where a and b are system parameters, and x and y indicate
internal state variables. First, on the (a, b)-plane, we sup-
pose that a grid spacing of 0.001, let the λ0

i at ith grid point
be a set of initial parameters. Then, let the λ0

i j, j = 1, 2, and
3 at vertices of an equilateral triangle with its gravity at λ0

i
be a set of initial search points. Periodic points and non-
periodic points observed at the search points are assumed
to be high order periodic points, and the parameters are up-
dated to the direction minimizing the local expansion rate
based on the downhill simplex method.

4. Simulation results

In the bifurcation diagrams shown in this section, Gp, Ip,
and NS p indicate the tangent bifurcation, period-doubling
bifurcation, and Neimark-Sacker bifurcation of the peri-
odic points, respectively. Figures 2(a) and (b) show over-
lapped images of the local expansion rate for attractors and
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Figure 2: Overlapped image of the local expansion rate and the bifurcation diagram for Hénon map and Kawakami map.

the bifurcation diagrams of periodic points of the Hénon
map and Kawakami maps. The colored contour plots
present the values of the local expansion rate, as indicated
by the color bar. Cold color indicates a small local expan-
sion rates and then high stability.

Figure 3 shows a typical simulation result with the bifur-
cation diagram of the periodic points for the Hénon map.
The parameters λt

i, obtained with the updates for γt
i less

than -0.2, are indicated by the small blue dots. The typical
trajectories are presented by the red solid lines with arrows.
The ends of the line correspond to the initial parameter λ0

i
and the final parameter λt

i. The updates are made in the di-
rection of the arrow. Because the local expansion rate of the
bifurcation or chaotic behavior is large and the stability is
low, the search points move from those parameter regions
to these directions to minimize the local expansion rates.
Multiple dots remaining in the shaded region in Fig. 3 exist
in the high-stability parameter region, and their local ex-
pansion rates are less than -0.2. Note that the search points
are not reached by high-stability parameters.

Figures 4(a)–(c) show the simulation results with θ =
−0.1,−0.3, and −0.4 for the Hénon map, and Figs. 4(d)–(f)
shows those with θ = 0,−0.02, and −0.1 for the Kawakami
map. The red colored small dots indicate the arrival points
at parameter λt

i. The fact that the small blue or red dots
in Figs. 3 and 4 are mainly distributed in the region with
the negative local expansion rate in Fig. 2 suggests that our
method successfully operates the system to avoid chaos.
In addition, choosing the threshold θ, we could control the
stabilities of the systems to avoid chaos and low-stability
conditions.

5. Conclusion

In this study, robustification of a nonlinear dynamical
system is considered, and the downhill simplex method is

b
-

a -

Figure 3: Chaos avoidance in the case of Hénon map.
（γt

i ≤ −0.2）

applied to solve the optimization problems in robust bifur-
cation analysis for dynamical systems based on the Hénon
map and Kawakami maps. The advantage of this method
is that it does not require differentiability of the objective
functions. The method is shown to be efficient, and it can
be generalized for avoiding chaos.
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Figure 4: Chaos avoidance with downhill simplex method in the case of (a)–(c):Hénon map and (d)–(f): Kawakami Map.
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