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Abstract—One of the most important pseudo random
numbers is a van der Corput sequence. We will consider it
from the view point of dynamical systems, and show that
the discrepancy of pseudo random numbers is deeply con-
nected with the ergodicity of a dynamical system. We first
study 1–dimensional cases, and then construct higher di-
mensional transformations which generate low discrepancy
sequences. Main tools are the spectra of Perron–Frobenius
operator and renewal equations.

1. Introduction

Let I = [0, 1]d (d ≥ 1) and F : I → I. We consider a
partition {⟨a⟩ : a ∈ A} of I, and express (I, F) to a symbolic
dynamics. Let X be a set of infinite sequences of symbols
a1a2 · · · (ai ∈ A), such that

∩∞
i=1 F−i+1(⟨ai⟩) consists of

unique point. We assume a dynamical system X with the
shift is isomorphic to (I, F).

We denote a finite sequence of symbols a1 · · · an (ai ∈ A)
a word and

• |w| = n,

• ⟨w⟩ = ∩n
i=1 F−i+1(⟨ai⟩),

• for x ∈ I, wx is a point such that wx ∈ ⟨w⟩ and
F |w|(wx) = x, if it exsits.

We consider a some order on A, and define an order wx <
w′x (w = a1 · · · an,w′ = b1 · · · bm) if

• |w| < |w′|,

• |w| = |w′|, and there exists k such that ak+1 · · · an =

bk+1 · · · bn and ak < bk.

We call a set {wx} with the above order a van der Corput
sequence generated by the dynamical system (I, F). The
famous van der Corput sequece for binary case:

0.1, 0.01, 0.11, 0, 001, 0.101, 0.011, 0.111, . . .

corresponds to d = 1, F(x) = 2x (mod 1) and x = 1
2 .

2. pseudo random numbers

A sequence x1, x2, . . . ∈ I is called uniformly distributed
if

D(N) = sup
J

[ 1
N

#{n ≤ N : xn ∈ J} − |J|
]

converges to 0 as N → ∞, where supremum is taken over
all the intervals in I and |J| is the Lebesgue measure of J.

It is conjectured that any sequence satisfies

D(N) ≥ O
(

(log N)d

N

)
.

Thus the sequences which satisfies the equality in the above
inequality is called of low discrepancy, this means the low
discrepancy sequences are the best possible pseudo random
numbers. Ninomiya ([9, 10]) showed that the van der Cor-
put sequences generated by β–transformation are of low
discrepancy. In 1–dimensional cases, we will extend this
result to more general piecewise linear cases, and at the
same time, we will construct low discrepancy sequences in
higher dimensional cases.

3. Perron–Frobenius Operator

We have constructed pseudo random numbers using dy-
namical system (I, F). The discrepancy of these sequences
are deeply connected with the spectra of the Perron–
Frobenius operator P associated with the dynamical sys-
tem:

P f (x) =
∑

y∈I,F(y)=x

f (y) |J(F)(x)|−1,

where J(F)(x) is the Jacobian of F at x. In the following we
assume that |J(F)| ≡ β and β > 1. In terms of the symbolic
dynamics, we can express P by

P f (x) =
∑
a∈A

f (ax) β−1.

The spectra of the Perron–Frobenius operator determine
the ergodic properties of the dynamical system:

• 1 is the eigenvalue of the Perron–Frobenius operator,
and we can choose a base of the eigenspace by density
functions of the invariant measures of the dynamical
systems.

• Assume that 1 is the simple eigenvalue, that is, there
exists unique invariant probability measure µ. If there
exists no eigenvalue modulus 1 except 1, then the dy-
namical system is mixing.

When we restrict the domain of P to a suitable space (in 1–
dimensional cases, BV , the set of functions with bounded
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variations), as the first greatest eigenvalue determines the
invariant measure, the second greatest eigenvalue in modu-
lus determines the speed of convergence to equilibrium:∫

f (x) g(Fn(x)) dµ→
∫

f (x) dµ
∫

g(x) dµ.

4. Renewal equation

In this section, we consider the case of 1–dimensional
dynamical systems (d = 1), and the partition {⟨a⟩}a∈A
is a partition of I = [0, 1] by intervals. We call inf⟨a⟩
and sup⟨a⟩ endpoints of {⟨a⟩}a∈A. A point inf⟨a⟩ is
called Markov if limx↓inf⟨a⟩ F(x) also belongs to the set
of endpoints, and a point sup⟨a⟩ is called Markov if
limx↑sup⟨a⟩ F(x) also belongs to the set of endpoints. If there
exists a partition such that all the endpoints are Markov,
then we call F Markov.

Theorem 1 Assume that there exists no eigenvalues |z| >
β−1 except 1. Let k be the number of non–Markov end-
points, then

D(N) = O
(

(log N)k+1

N

)
.

This says the pseudo random numbers can be of low dis-
crepancy only if F is Markov.

5. Renewal Equations

To prove the above theorem, we use renewal equations.
To show the outline of the proof, we consider the case of
the β–transformation F(x) = βx (mod 1), and β equals the
golden number 1+

√
5

2 .
Let A = {a, b} and ⟨a⟩ = [0, β−1), ⟨b⟩ = [β−1, 1]. We

define for c either a or b

s⟨c⟩(z, x) =

∞∑
n=0

znPn1⟨c⟩(x)

= (I − zP)−11⟨c⟩(x).

This suggest that the singularities of s(c)(z, x) equal the re-
ciprocals of the eigenvalues of P.

Now we construct a renewal equation. Note that
F(⟨a⟩) = I. Then

s⟨a⟩(z, x) = 1⟨a⟩(x) +
∞∑

n=1

znPn−1(P1⟨a⟩(x))

= 1⟨a⟩(x) +
∞∑

n=1

znPn−1
( ∑

y∈I,F(y)=·
1⟨a⟩(y)β−1

)
(x)

= 1⟨a⟩(x) + zβ−1
∞∑

n=0

znPn1I(x)

= 1⟨a⟩(x) + zβ−1
∞∑

n=0

znPn(1⟨a⟩(·) + 1⟨b⟩(·))(x)

= 1⟨a⟩(x) + zβ−1(s⟨a⟩(z, x) + s(b)(z, x)
)
.

On the other hand, as F(⟨b⟩) = ⟨a⟩, we get

s⟨b⟩(z, x) = 1⟨b⟩(x) + zβ−1s⟨a⟩(z, x).

Thus we can express them into the following form:(
s(a)(z, x)
s⟨b⟩(z, x)

)
=

(
1⟨a⟩(x)
1⟨b⟩(x)

)
+

(
zβ−1 zβ−1

zβ−1 0

) (
s(a)(z, x)
s⟨b⟩(z, x)

)
.

This is a renewal equation for one of the simplest cases. We
denote

Φ(z) =
(
zβ−1 zβ−1

zβ−1 0

)
,

and call it the Fredholm matrix. We get(
s(a)(z, x)
s⟨b⟩(z, x)

)
= (I − Φ(z))−1

(
1⟨a⟩(x)
1⟨b⟩(x)

)
.

This suggests that the solutions of det(I − Φ(z)) = 0 are
the reciprocals of the eigenvalues of the Perron–Frobenius
operator P. Moreover, we can prove det(I − Φ(z)) equals
the dynamical zeta function

ζ(z) = exp

 ∞∑
n=1

zn

n

∑
p : Fn(p)=p

|Fn′(p)|−1

 .
Thus this suggests that the singularities of the dynamical
zeta function are also the reciprocals of the eigenvalues of
the Perron–Frobenius operator P.

Actually, we can prove the above conjectures are true
when we restrict P to BV . We can extend the results to non–
Markov transformations. See for detail [3, 4]. Moreover,
we can extend the results to higher dimensional cases([7]).

6. Discrepancies

We apply the results of the former section to calculate
the discrepancy of the van der Corput sequences. For an
interval J ⊂ I, then

#{wx ∈ J : |w| = n} =
∑
|w|=n

1J(wx) = βnPn1J(x).

Thus for a word u such that F |u|(x) = I
∞∑

n=0

zn#{wx ∈ ⟨u⟩ : |w| = n} =
∞∑

n=0

zn
∑
|w|=n

1⟨u⟩(wx)

=

∞∑
n=0

znβnPn1⟨u⟩(x) =
|u|−1∑
n=0

zn1Fn(⟨u⟩)(x) + z|u|sI(βz, x).

On the other hand, if N equals the number of words for
which the length is less than or equal to n, then

1
N

n∑
k=0

#{wx ∈ J : |w| = k} = 1
N

n∑
k=0

βkPk1J(x).

Thus we can calculate it using the k–th coefficient of
sJ(z, x) (k ≤ n), and we get the proof of Theorem 1. See
for detail [5, 6], and the computer simulation of this pseudo
random numbers, see [1].
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7. Higher Dimensional cases

We can also construct a renewal equation for d ≥
2. However, the essential spectral radius of the Perron–
Frobenius operator is usually greater than β−1. Thus it is
very difficult to construct pseudo random numbers of low
discrepancy. We will construct it using irreducible polyno-
mials.

We consider a d–dimensional irreducible polynomial
p(β) on F2. We express by Â = [1, β, . . . , βd−1] the additive
group generated by {1, β, . . . , βd−1}.

We identify βk (0 ≤ k ≤ d − 1) as


αk

0
...
αk

d−1

 ∈ A such that

αk
k = 1 and αk

i = 0 (i , k). Thus for x ∈ [0, 1]d with its
binary expansion 0.α1α2 · · · (αk ∈ A), we can identify it
as a sequence of Ã. Instead of constructing F : [0, 1]d →
[0, 1]d, we will construct F̂ : ÃN → ÃN.

Let Ai =



1
β2i−1

β2·2i−1

...

β(d−1)2i−1


(1 ≤ i ≤ d). and consider a ma-

trix (A1, A2 . . . , Ad). Note that this matrix has inverse on

F2. We denote its inverse matrix by


X1
...

Xd

, where Xi is a

d–dimensional row vector.

Example 1 For d = 3 and p(β) = 1 + β + β3,

(A1, A2, A3) =

 1 1 1
β β2 β4

β2 β4 β8

 =
 1 1 1
β β2 β + β2

β2 β + β2 β

 ,
and X1

X2
X3

 =
1 β2 β
1 β4 β2

1 β β4

 =
1 β2 β
1 β + β2 β2

1 β β + β2

 .
We will define infinite dimensional matrices U = (ai j)i, j≥1
and V = (xi j)i, j≥1, where ai j is a d–dimensional column
vector of A and xi j is a d–dimensional row vector of A.
Note that in U, 0 means the d–dimensional zero column
vector, and in V , 0 means the d–dimensional zero row vec-
tor. Let us define rule A by

ãi j =

ãi−1, j−1 j = 1 (mod d),
ãi−1, j−1 + ãi. j−1 (mod 2) otherwise.

with initial condition ã11 = 1 and ã(0, i) = 0, and we define
a matrix U by

ai j =

Ak if ãi j = 1, and j = k (mod d),
0 if ãi j = 0.

Let x̃i j also satisfy rule A with initial condition x̃i j = 1 if
⌈ i−1

d ⌉ = j and x̃i j = 0 if ⌈ i−1
d ⌉ < j. We define a matrix V by

xi j =

Xk if x̃i j = 1, and i = k (mod d),
0 if x̃i j = 0.

Example 2 For d = 3, U equals

U =



A1 A2 A3 0 0 0 0 0 0 · · ·
0 A2 0 A1 A2 A3 0 0 0 · · ·
0 0 A3 0 A2 0 A1 A2 A3 · · ·
0 0 0 A1 A2 0 0 A2 0 · · ·
0 0 0 0 A2 0 0 0 A3 · · ·
0 0 0 0 0 A3 0 0 0 · · ·
...

...
...

...
...

...
...

...
...
. . .


,

and V equals

V =



X1 0 0 0 0 · · ·
X2 0 0 0 0 · · ·
X3 0 0 0 0 · · ·
0 X1 0 0 0 · · ·
X2 X2 0 0 0 · · ·
0 X3 0 0 0 · · ·
0 0 X1 0 0 · · ·
X2 X2 X2 0 0 · · ·
X3 0 X3 0 0 · · ·
0 X1 0 X1 0 · · ·
0 0 X2 X2 0 · · ·
0 0 0 X3 0 · · ·
0 0 0 0 X1 · · ·
X2 X2 X2 X2 X2 · · ·
X3 0 X3 0 X3 · · ·
...

...
...

...
...
. . .



.

These form Sierpinskii gaskets.

We define a transformation F̂ by

VF̂U =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...
...
...
...
. . .

 ,
that is, VF̂U is the shift.

Then for a rectangular J which is a union of intervals cor-
responding to words such that its length of edges l1, . . . , ld
satisfies l1 × l2 · · · × ld = 2−kd, we can show Fk(J) = I.
From this fact, we can prove that the essential spectral ra-
dius of the Perron–Frobenius operator equals 2−d and there
exists no eigenvalue except 1 in |z| > 2−d, thus the van der
Corput sequence generated by this transformation is of low
discrepancy. See for detail [2, 8].
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