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Abstract—Compared with Luby Transform (LT) codes
having an ideal/robust soliton degree distribution, LT codes
with encoded-symbol degree following a modified power-
law distribution (scale-free LT codes) have been shown to
possess a higher probability of successful decoding and a
lower encoding/decoding complexity when the information
symbol length ranges from 512 to 2048. In an attempt
to reduce the size of the initial ripple set of scale-free LT
(SF-LT) codes so as to prevent the ripple set from becom-
ing empty, a new class of LT codes, namely robust SF-
LT (RSF-LT) codes, is proposed in this work. The per-
formance and characteristics of the proposed RSF-LT code
are compared with those of other LT codes including robust
LT code, SF-LT code, and “LT code with decreasing ripple
set”. Results show that the proposed RSF-LT code out-
performs the other codes with respect to average overhead,
encoding/decoding efficiency and probability of successful
decoding.

1. Introduction

Luby transform (LT) codes are the first type of practical
rateless code [1]. It is originally designed for reliable data
transmission over a binary erasure channel (BEC), which
is suitable for the modeling of the Internet. Recently, LT
codes have also been discussed for use in mobile multime-
dia broadcasting, wireless sensor networks, etc. [2, 3].

An LT code is capable of generating an unlimited num-
ber of encoded symbols based on a source message of
length K. Regardless of the erasure probability of a BEC,
an LT decoder can recover the original K input symbols
when (1+a)x K encoded symbols have been received. Here
a is a real number slightly larger than 0. Consequently, LT
code is a near-optimal channel code for all erasure chan-
nels.

Whether an LT code is well designed or not is deter-
mined by the degree distribution of its encoded symbols
[4]. The ideal soliton distribution is the first degree dis-
tribution used to construct LT codes [1]. LT codes based
on such a distribution can theoretically keep the ripple size
always equaling one in the decoding process. Therefore,
such a design avoids any redundancy and is optimal. How-
ever, any fluctuation around this expected behavior results
in a lack of degree-1 encoded symbols and hence an un-

successful decoding [5]. To deal with the above prob-
lem, a robust soliton distribution has further been proposed
and it aims at maintaining a ripple size larger than one
in the whole decoding process [1]. Results show that LT
codes based on the robust soliton distribution outperform
the original LT codes.

In [6], an LT code that can maintain the ripple size to a
pre-defined constant during the decoding process has been
proposed. In [7], LT codes with decreasing ripple size
are designed and analyzed. The results indicate that such
LT codes are capable of producing a higher performance.
In [8], using the shortest-average-path-length property of
scale-free networks, a class of scale-free LT (SF-LT) codes
has been proposed. It has further been shown that SF-LT
codes outperform LT codes based on robust soliton distri-
bution and LT codes based on suboptimal distribution. In
this paper, a new class of LT codes, namely robust SF-LT
(RSF-LT) codes, is proposed and investigated.

2. Proposed Robust SF-LT code

In [8], a SF-LT code with the degree of the encoded sym-
bols following a modified power-law distribution has been
proposed. Specifically, the distribution is given by

7(d) = {

where P is the fraction of degree-1 encoded symbols; vy is
the characteristic exponent; and A is a normalizing coeffi-
cient to ensure Y5, 7(d) = 1.

d=1
d=2,3,.,K-1,K.

Py,

Ad, b

We defined a released encoded symbol as an encoded
symbol whose degree becomes 1 during the iterative de-
coding process, and a ripple set as the set of input sym-
bols which are connected to the released encoded symbols.
Assume that at the end of each iteration in the decoding
process, the neighboring input symbols of a newly released
encoded symbol are not elements in the ripple set. Sup-
pose (1 + @) x K encoded symbols have been received to
recover K input symbols. Then, the theoretical evolution of
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Figure 1: The theoretical ripple evolution of the SF-LT
codes when K = 1024.

the ripple size can be calculated using [9]

PG =(1+a)Kp()  i=12,....K

w1 = wh(1) - 1+ 22 gl )

W) = WEG) — £WEG) + PR+ 1) 2
i=23,...,L-1

YL =0

where WX(i) is the number of degree-i input symbols left in
the decoding process when L input symbols remain unpro-
cessed, and p(i) denotes the probability of an encoded sym-
bol having a degree i. Theoretically, the ripple size should
be no less than 1 throughout the whole decoding process to
prevent the decoding process stopped prematurely.

The theoretical evolution of the ripple size for a SF-LT
code can be evaluated by substituting Eq.(1) into Eq.(2).
Fig. 1 plots the ripple evolution of SF-LT codes when
K = 1024. The results indicate that the SF-LT code can
recover the original input symbols when the overhead fac-
tor is @« = 0.06 using the parameter set P; = 0.09 and
v = 2.1. However, when « is reduced to 0.05, the ripple
size will become smaller than 1 at a certain point and the
SF-LT codes will not be able to recover the input symbols.

In this paper, the characteristics of the ideal soliton dis-
tribution are applied to the design of SF-LT codes, forming
the proposed robust SF-LT code. The aim is to decrease the
probability that the ripple set becoming empty.

Definition 1 A robust scale-free LT code, denoted as RSF-
LT code for short, is defined as an LT code with the degree
of the encoded symbols following a distribution given by

pd) +1(d)

)= 22T
HD =56 o+ 1)

3

where p(d) is the ideal soliton distribution expressed as

1/K
p<d>={ /1

ad-1)

d=1,
d=2.3...K )

and 1(d) is the modified power-law degree distribution
given in Eq.(1).

The encoding and decoding complexity are both going
to scale linearly with the number of edges in the Tanner
graph. It has been shown in [5] that when the number of en-
coded symbols received is close to Shannon’s optimal, i.e.
K encoded symbols, the average degree of each encoded
symbols should be at least In K for the sake of making the
decoding possible. Consequently, it is necessary to ensure
that Zi’i [du(d)] > In K when the parameters P,y and A
are selected for the RSF-LT codes.

3. Results and Discussions

In this section, the characteristics and performance of (i)
LT codes based on robust soliton degree distribution [1];
(i1) SF-LT codes [8]; (iii) LT code with decreasing ripple
size in [7] and (iv) proposed RSF-LT codes are compared.
The particular LT codes to be studied are as follows.

e Robust LT code: LT codes based on robust soliton dis-
tribution with parameters § = 0.1 and § = 1 have been
proven to provide the smallest average overhead factor
[10]. Such robust LT codes are used here.

SF-LT1: SF-LT code using P; = 0.1 and y = 2.0
SF-LT2: SF-LT code using P; = 0.09 and y = 2.1
RSF-LT1: RSF-LT code using Py =0.1 andy = 1.9
RSF-LT2: RSF-LT code using P; = 0.1 and y = 2.1
RSF-LT3: RSF-LT code using Py = 0.1 and y = 2.0
RSF-LT4: RSF-LT code using P1=0.09 and y = 2.1
LT code in [7]: LT code with decreasing ripple set
proposed in [7] using n = 1075,R = 21 when K =
1024; and n = 2108, R = 25 when K = 2048.

3.1. Theoretical Evolution of the Ripple size

The theoretical evolution of the ripple size for the pro-
posed RSF-LT code is evaluated by substituting Eq.(3) into
Eq.(2). The results are plotted, together with those of ro-
bust LT code, SF-LT codes and LT code in [7], in Fig. 2
when the number of input symbols K = 1024. It can be
observed that except for the LT code in [7] which has a
decreasing ripple size, the ripple sizes of other LT codes
decrease initially, and then increase before decrease again.

The results in Fig. 2 also indicate that RSF-LT3 code and
RSF-LT4 code can recover the 1024 input symbols when
(1 +0.05) x 1024 ~ 1075 encoded symbols (i.e., overhead
a = 0.05) have been received. Furthermore, RSF-LT2 code
can recover all input symbols when the number of received
encoded symbols approaches N = (1+0.03)x1024 ~ 1055.
For the robust LT code, the ripple set will become smaller
than 1 during the evolution if the overhead factor equals
a = 0.06, implying that the decoding process will fail.
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Figure 2: Theoretical ripple evolution of the Robust SF-LT
codes, SF-LT codes and Robust LT codes when K = 1024.

With the same overhead @ = 0.06, SF-LT2 code can re-
cover all encoded symbols. However, as shown in Fig. 1,
SF-LT2 code cannot recover the encoded symbols if the
overhead is reduced to @ = 0.05. For LT codes in [7], the
ripple set will not become empty when overhead a > 0.03.
In summary, the results indicate that theoretically the pro-
posed RSF-LT codes can achieve similar or even smaller
overhead factor compared with other types of LT codes.

Note that in the iterative decoding process, not all the
input symbols connected to a newly released degree-1 en-
coded symbol will useful. The reason is that they may al-
ready exist in the ripple set. Thus, the actual number of
encoded symbol ((1 + @) X K) required to recover K input
symbols may be larger than the results revealed in this sec-
tion. Yet, the theoretical ripple evolution can provide an
effective method for selecting parameter sets for RSF-LT
codes.

3.2. Code Characteristics

The characteristics of the LT codes described in the pre-
vious section is further studied over a perfect channel. For
each of the LT codes, M = 2000 different sets are con-
structed and evaluated when K = 1024 and K = 2048. The
following symbols are defined.

e d: average degree of the encoded symbols

e X: average number of XOR operations for generating
an encoded symbol

e ¢: average number of XOR operations for decoding
an LT code over a perfect channel

e (: average overhead factor.

Table 1 lists the characteristics of the LT codes under
study. It can be observed that when K = 1024 and 2048, all
the proposed RSF-LT codes outperform the robust LT code
in terms of average overhead factor @ and average number

of encoding/decoding operations (X and ¢). The proposed
RSF-LT codes also (i) outperform the SF-LT codes in terms
of average overhead factor and achieve similar range of av-
erage number of encoding/decoding operations compared
with the SF-LT codes; and (ii) outperform the LT code in
[7] in terms of the average number of encoding/decoding
operations and achieve similar range of average overhead
factor compared with LT code in [7].

3.3. Decoding Performance over a BEC

The decoding performance of the LT codes over a BEC is
simulated with an erasure probability of P,,, = 0.1. Fig. 3
and Fig. 4 plot the probability of successful decoding of the
LT codes when K = 1024 and K = 2048, respectively.

In Fig. 3 and Fig. 4, it can be observed that all the pro-
posed RSF-LT codes and the SF-LT2 code outperform ro-
bust LT code when the number of encoded symbols re-
ceived is relatively small (less than 1220 at K = 1024, 2300
at K = 2048). When the number of encoded symbols re-
ceived become large, robust LT code begins to outperform
other codes but is still outperformed by RSF-LT1 code and
RSF-LT3 code. Compared with LT code in [7], RSF-LT3
code achieves a similar probability of successful decoding
when the number of encoded symbols received is relatively
small. As the number of encoded symbols received be-
comes larger, RSF-LT1 code and RSF-LT3 code outper-
form LT code in [7]. Moreover, RSF-LT2 code and RSF-
LT4 code achieve a similar probability of successful decod-
ing with LT code in [7] with the same number of encoded
symbols received. Based on the results listed in Table I, it
can be further concluded that both RSF-LT1 and RSF-LT3
codes can achieve the best performance in terms of encod-
ing/decoding complexity (¥ and @) as well as probability of
successful decoding when K = 1024 and K = 2048.
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Figure 3: Probability of successful decoding versus the
number of encoded symbols received. K = 1024 and
P, =0.1.
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Table 1: Code characteristics

K Code d x o 7] K Code d x o a
Robust LT code 9.94 894 10722 0.155 Robust LT code 11.15 10.15 23729 0.129
RSF-LT1code 9.57 859 9935 0.115 RSF-LT1 code 10.77 9.74 22067 0.099
RSF-LT2code 749 649 7562 0.120 RSF-LT2 code  8.11  7.09 16339 0.110
RSF-LT3 code 835 7.34 8241 0.107 RSF-LT3 code  9.18  8.12 18155 0.085
1024 RSF-LT4code 7.53 650 7576 0.113 | 2048 RSF-LT4code 8.14 7.14 16266 0.099
SF-LT1 code 920 819 9655 0.135 SF-LT1code  10.16 9.14 21232 0.123
SF-LT2 code 7.54 654 7671  0.125 SF-LT2 code 8.08 7.07 16374 0.117
LTcodein [7] 1524 1420 16346 0.118 LT codein [7] 17.51 16.61 37689 0.098
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Figure 4: Probability of successful decoding versus the
number of encoded symbols received. K = 2048 and
Peq =0.1.

4. Conclusion

In this paper, a new type of LT code called robust scale-
free LT (RSF-LT) code has been proposed. It integrates the
characteristics of (i) LT codes based on ideal soliton dis-
tribution and (ii) scale-free LT codes. Theoretical analyses
on the ripple evolution process indicate that the proposed
RSF-LT code outperforms robust LT code, SF-LT code and
LT code in [7]. Simulations over a BEC further reveals
that among all the LT codes under study, RSF-LT1 code
and RSF-LT3 code achieve the best probability of success-
ful decoding as well as the lowest encoding/decoding com-
plexity.
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