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Abstract—The robustness of complex networks against
external perturbations, such as node and/or link removal, is
critical for the functioning of a complex network and has
been studied through various approaches. Most analyti-
cal work assumes, for simplicity, that there is no specific
correlation in connecting nodes, because of the difficulty
and complexity in treating correlation between node con-
nections properly. Since many networks in the real world
do have such correlation, we focus on deriving analytical
equations for calculating the threshold and the giant com-
ponent fraction for networks having degree-degree corre-
lations against arbitrary strategies of node removal. As an
example of the analyses using these expressions, we show
how the vulnerability of scale-free networks against tar-
geted node removal can be significantly improved by taking
the structure in which the nodes with almost the same de-
gree are connected to each other. Our analytic calculations
are verified by numerical simulations.

1. Introduction

Many complex systems in real world can be modeled
by complex networks. Generally speaking, the cooperative
performance of complex systems fundamentally relies on
the global connectivity of their components. These com-
plicated systems are, however, usually placed in an ever-
changing external environment where the components or
the connections could be constantly added, eliminated, or
changed. Such changes may potentially affect the global
connectivity of the network under consideration to the ex-
tent in which the global connectivity could be completely
lost and the system represented by the network will lose
its functionality. The analysis of the response of the global
connectivity caused by the alteration of the network, or tar-
geted attacks, has been therefore one of the main issues of
the complex network analysis. Most of the existing theo-
retical studies on the robustness of complex networks, how-
ever, depend only on the degree distribution

Recently, Schneider et al. developed an interesting nu-
merical approach for enhancing network robustness against

high degree node removal [6, 7]. They start from an
uncorrelated random network with a given degree distri-
bution. Next, they randomly choose two pairs of links
and exchange the destinations of the two links between
them keeping the overall degree distribution unchanged.
If this exchange improves the robustness of the network
against targeted node removal, the exchange is accepted.
By repeating this procedure, the robustness of the network
is enhanced step by step. They applied this method to
several types of networks with broad degree distributions
and found that the final robust networks have a common
“onion-like” topology consisting of a core of highly con-
nected nodes hierarchically surrounded by rings of nodes
with decreasing degree [6, 7]. In each ring most of the
nodes are of the same degree.

Motivated by the onion-like topology, we study here an-
alytically the robustness of a family of such systems [8].
In our approach we obtain analytical expressions for the
critical threshold and for the giant components, where the
degree-degree correlation is fully incorporated. Due to the
analytical approach, a statistical treatment over large num-
ber of realizations as done in computer simulations is not
needed to obtain definite results. Nevertheless both analyt-
ical and simulation approaches are necessary and comple-
mentary, in particular, for testing the analytical approach.
Interestingly, the optimal structure we find here against
simultaneous random and targeted high degree node re-
movals is very similar to the “onion-like” structure found
by Schneider et al. [7]. The optimal structure obtained con-
sists of hierarchically and weakly interconnected random
regular graphs.

2. Theory

We start from the joint degree-degree probability matrix,
P(k, k′), which is the probability that a randomly chosen
link emanates from a k-degree node and ends at a k′-degree
node. In this article, we consider only the cases of undi-
rected networks, where the symmetry P(k, k′) = P(k′, k)
holds. The sum of P(k, k′) over k′ is the probability that
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a randomly chosen link starts from a k-degree node. It is
related to the probability density of the degree distribution,
P(k), through the relation,

∑
k′ P(k, k′) = kP(k)/〈k〉, where

〈k〉 is the average degree. By definition,
∑

k P(k) = 1.
Note that the sum

∑
k′ P(k, k′) has to be fixed if we fix

the degree distribution, P(k). The conditional probabil-
ity, P(k′|k), that a randomly chosen link emanating from
a k-degree node leads to a k′-degree node is defined by
P(k′|k) ≡ P(k, k′)/

∑
k′ P(k, k′) = P(k, k′)/ (kP(k)/〈k〉).

When the nodes of a network are removed according
to the degree of nodes, the remaining fraction of k-degree
nodes is reduced by a factor bk (0 ≤ bk ≤ 1) from the origi-
nal fraction, P(k). The total remaining fraction of nodes, p,
is calculated as p =

∑
k bkP(k).

The giant component in a complex network is a cluster
of connected nodes, where its normalized size in the net-
work, S , remains finite as the total number of nodes, N,
becomes infinite. Non-zero values of S indicate a macro-
scopic connectivity of the network under consideration.

To calculate the critical value of the remaining fraction
of nodes, pc, above which the giant component, S , begins
to take a non-zero value, we extend the generating func-
tion method [2, 5] by incorporating the degree-degree cor-
relation under an arbitrary type of degree based node re-
moval. Let xk be the probability that a randomly chosen
link from a k-degree node does not lead to the giant com-
ponent. We assume that the network only consists of trees,
which is justified in the limit of N → ∞. The probabili-
ties, xk, (k = m,m + 1, . . . ,K), for non-zero values of bk is
determined by the following self-consistent equations for
each k:

xk =
∑

k′
(1 − bk′)P(k′|k) +

∑
k′

bk′P(k′|k) (xk′)k′−1 . (1)

Using these xk’s, the probability that a randomly chosen
node does not belong to the giant component fraction,
which is 1 − S , is determined by the equation,

1 − S =
∑

k

(1 − bk)P(k) +
∑

k

bkP(k)(xk)k. (2)

These equations are diagrammatically represented in
Fig. 1. From Eq. (2), the giant component fraction, S , is
obtained by the equation,

S = p −
∑

k

bkP(k) (xk)k =
∑

k

bkP(k)
(
1 − (xk)k

)
, (3)

where p =
∑

k bkP(k) is the total remaining node fraction.
Obviously, xk = 1 for removing all k-degree nodes (bk =

0). Note that these equations contain the remaining fraction
of k-degree nodes, bk. Equations (1) and (3) are a necessary
extension of existing works in order to investigate all types
of node removal. The degree-degree correlation is included
in the conditional probability, P(k′|k).

Below the critical remaining fraction of nodes, all xk’s
are equal to one and it follows from Eq. (3) that S = 0

(a)

(b)

Figure 1: Diagrammatic representation of the equations
that determine xk and S . The diagram (a) represents the
equation for the probability xk and the diagram (b) repre-
sents the equation for the probability that a randomly cho-
sen node does not belong to the giant component, which is
1 − S . The dashed line circles represent that the k-degree
nodes are vacant by removal with probability 1 − bk.

(no giant component). At criticality where the giant com-
ponent emerges, at least one of xk’s takes a value slightly
smaller than one. In the vicinity of the critical point, we
assume xk = 1−yk and expand Eq. (1) in terms of infinites-
imally positive quantities yk. The equation obtained by this
expansion becomes

yk =
∑

k′
Bkk′yk′ + O(y2

k), (4)

where the “branching matrix,” Bkk′ , is defined by Bkk′ ≡
bk′P(k′|k)(k′ − 1). The eigenvalues of the branching matrix
are all non-negative and can be ordered according to their
values. The critical point can be obtained by the point at
which the largest eigenvalue of Bkk′ becomes unity [5].

3. Optimal Structure

The robustness of a given network depends on the
method of node removal. For example, scale-free networks
are almost completely robust against random node removal
while they are extremely vulnerable against targeted re-
moval of high degree nodes [1, 2, 3, 4]. The results for
the robustness is, however, derived for random networks
and thus are based only on the degree distribution. It is in-
teresting, therefore, to clarify to what extent we are able to
improve the robustness of a complex network against tar-
geted attack by introducing the degree-degree correlation
while keeping the network degree distribution unchanged.

With this in mind, we focus on the improvement of the
robustness of complex networks against targeted high de-
gree node attack. We limit our analysis to networks where
the number of k-degree nodes decreases with increasing
k. In targeted high degree attack, all nodes that have
higher degrees than a certain value are eliminated. Re-
moving a node also eliminates all the edges attached to it.
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Since the edges are connected with the remaining lower
degree nodes, the elimination of those edges undermines
the global connectivity of the remaining lower degree node
component. In order to minimize such undermining effects
as much as possible, the number of edges that connect re-
moved higher degree nodes and the remaining lower degree
nodes should be minimized as much as possible. Hence the
following requirement should be fulfilled.

Requirement: The k-degree nodes should not be con-
nected to nodes with degree, k′, lower than k (k′ < k).

This Requirement yields that most of the edges should
connect nodes of the same degree. Thus the optimal struc-
ture built up from a set of random regular (RR) graphs
naturally emerges. To form an entirely connected single
network, these RR graphs must be connected with one an-
other. The most robust network against targeted attack with
a given degree distribution can, therefore, be constructed by
the following procedure.

1. Prepare a suitable number of nodes for each degree
according to the given degree distribution. We assume
that the number of nodes for each degree is so large
that all edges can find nodes to be attached in both
end points.

2. Let the smallest degree be m and begin to construct
the network from an m-degree component, which is
the last remaining component for targeted high degree
node removal. If the Requirement is completely ful-
filled, no edges of the m-degree component are elimi-
nated by targeted removal of nodes with degree larger
than but not equal to m. The last remaining m-degree
component forms, therefore, an RR graph of degree
m.

3. Next, attach the nodes with degree m + 1. Accord-
ing to the Requirement, the attached (m + 1)-degree
nodes cannot be connected to the (smaller) m-degree
component. Thus all (m + 1)-degree nodes should be
connected with one-another and forms an RR graph of
degree (m + 1).

Up to this point, the network consists of two separated
RR graphs with degree m and m+1. However, to make
a single connected network we have to connect these
two components. To fulfill the Requirement as much
as possible under the condition of the fixed degree dis-
tribution, we break two edges, the one of which is in
the RR graph of degree m and the other of which is in
the RR graph of degree m + 1, and rewire these two
edges. Note that this rewiring does not change the de-
gree distribution.

4. Attaching the nodes with next larger degree, m+2 can
be performed in the same way. First, following the
Requirement, these nodes should be connected with

(a) (b)

(c) (d)
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Figure 2: (Color online) Plots of the giant component, S , of
scale-free networks with λ = 2.6 and K = 10 of the optimal
structure proposed in Section 3 as a function of p. For plots
(a) targeted attack and (b) random attack, we set m = 2 and
for plots (c) targeted attack and (d) random attack, m = 3.
In all plots, the theoretical values for the giant component
are represented by full curves. The critical node thresh-
olds for targeted attack are P(2) + P(3)/2 for m = 2 and
P(3)/2 for m = 3. We also plot, for comparison, the curves
for the corresponding uncorrelated scale-free network with
the same values of parameters (dashed curves) and for the
RR network with the same degree as the average degree of
the corresponding scale-free network (dotted curves). The
(blue) circles are obtained from simulation of a single re-
alization for each of the optimal networks with the total
nodes, N = 6993 for m = 2 and with N = 2795 for m = 3.

one-another. Hence, an RR graph with degree m + 2
emerges. Next, to make a single connected network
under the conditions of the Requirement and the fixed
degree distribution, two edges in the RR graph of de-
gree m+1 and the RR graph of degree m+2 are broken
and rewired.

By repeating this argument up to the nodes with the
largest degree, K, we reach the structure in which
RR graphs with degrees hierarchically up from m to
K are minimally interconnected. This structure has a
close resemblance with the robust “onion-like” struc-
ture found using numerical simulations by Schneider
et al. [6, 7].
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4. Results

In Fig. 2, we plot the giant components of scale-free net-
works for targeted and random attacks, in which the degree
distribution is represented by P(k) ∝ k−λ, constructed by
the procedure described in Section 3 as a function of the
remaining fraction of nodes, p. In these plots, we set the
exponent, λ = 2.6, and the maximum degree, K = 10.
Two values of the minimum degree, m = 2 and m = 3,
are calculated. The theoretical values of the giant compo-
nent fraction are represented by full curves. The critical
node thresholds for targeted attack are P(2) + P(3)/2 for
m = 2 and P(3)/2 for m = 3, respectively. For comparison,
we also plot the curves for the corresponding uncorrelated
scale-free network with the same parameters and for the
RR network of the same degree as the average degree of
the corresponding scale-free networks. These results show
that the robustness of scale-free networks against targeted
attack can be significantly improved up to nearly maximal
by taking the structure of weakly interconnected RR graphs
(onion-like structures) without much undermining their in-
trinsic robustness against random failure.

For testing our theoretical considerations, we also simu-
late actual networks corresponding to the ones theoretically
calculated. The circles in Fig. 2 are obtained by direct node
removal from the simulated optimal networks. For each re-
alization, the number of nodes for m = 2 is 6993 and for
m = 3 is 2795. The agreement between the simulation re-
sults and the theoretical calculations is excellent.

5. Summary

As a strong candidate for the optimal structure against
both types of attacks, random and targeted, with a given de-
gree distribution, the structure consisting of hierarchically
interconnected random regular graphs is proposed and thor-
oughly investigated based on exact analytical expressions.
This network structure has a close relationship with the
“onion-like structure” found by Schneider et al. [6, 7] us-
ing numerical simulations and exhibits an extremely assor-
tative degree-degree correlation, in which a node of cer-
tain degree has a strong tendency to be linked with nodes
of the same degree. We derive a set of exact expressions
that enable us to calculate the critical node threshold and
the giant component fraction for arbitrary types of node re-
moval, in which the degree-degree correlation is fully in-
corporated. To test the robustness of this structure, we ap-
ply the theory to the case of scale-free networks that have
a well-known vulnerability against targeted attack. The re-
sults show that the vulnerability of a scale-free network can
be significantly improved by taking the network structure
proposed here without much undermining its almost com-
plete robustness against random attack. We also investigate
the detail of the robustness enhancement of scale-free net-
works due to assortative degree-degree correlation by intro-
ducing a joint degree-degree probability matrix that inter-

polates between an uncorrelated network structure and the
structure with strong assortativity by tuning a single con-
trol parameter. The optimal values of the control parameter
that maximize the robustness against simultaneous random
and targeted attacks are also determined and those optimal
values support the maximal robustness of the “onion-like
structure.” Our analytical calculations are supported by nu-
merical simulations.
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