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Abstract—We derived an equation of continuity for the
probability density function of electrons on nanocarbon
materials. From the derived equation, we built a cellular
array model of the materials with hexagonal lattice struc-
ture. A virtual electron particle moves on the lattice proba-
bilistically along with probabilistic current in the equation
of continuity. From numerical experiments, we found that
the cellular array successfully provided numerical samples
of electron trajectories on the materials.

1. Introduction

Nanocarbon materials like graphene [1] and carbon nano
tubes (CNT) [2] are expected to be used for quantum effect
devices because of their high electron mobility and their
intrinsic quantum mechanical properties such as Klein tun-
neling.

Quantum effect devices are often represented by prob-
abilistic models in circuit simulators. If the behavior
of electrons in the devices is described by a scalar type
of Schrödinger equation, Nelson’s stochastic quantization
theory is often applied to build the models [3]. However, it
is difficult to apply the theory into modeling nanocarbon-
based quantum effect devices because electron behavior in
the nanocarbon materials is described by a different type
of equation, two-dimensional massless Dirac equation [4].
A new method must be established to build the models of
nanocarbon-based devices.

In this paper, an equation of continuity for the proba-
bility density of an electron in the nanocarbon material is
derived. Then, based on the derived equation, a cellular ar-
ray model of the materials with hexagonal lattice structure
is built as a kind of probabilistic cellular automata [5].

2. Nanocarbon Materials

Graphene sheets are composed of carbon atoms bonding
to one another as shown in Fig. 1. The carbon atoms A and
B, lattice points of a hexagonal lattice, are non-equivalent
and adjacent two carbon atoms A and B form a unit cell of
graphenes. The behavior of electrons on graphene sheets is
described by the following approximate equation:

i~
∂

∂t
Ψ(x, y, t) =

x

y
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Figure 1: Structure of graphenes.

[
~vF

(
σxk̂x + σyk̂y

)
+ V(x, y)

]
Ψ(x, y, t) (1)

where ~ is the Plank constant divided by 2π, vF is the Fermi
velocity, and V(x, y) denotes static potential distribution.
Wave functionΨ(x, y, t),

Ψ(x, y, t) =
(
ψA(x, y, t)
ψB(x, y, t)

)
, ψA,B : R3 → C1 (2)

possesses two elements ψA/B(x, y, t) which are wave func-
tions of the electrons on two sublattices consisting respec-
tively of carbon atoms A and B. The operators in Eq. (1)
are defined as k̂x ≡ −i∂/∂x, k̂y ≡ −i∂/∂y. Pauli spin matrices
σx, σy in the equation are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
(3)

Equation (1) is the two-dimensional Dirac equation with
mass of zero and light speed c replaced by vF .

A CNT is considered as a cylindrical graphene sheet in
structure. We define two linearly independent vectors e1
and e2 given by

e1/2 =
a
2

(
√

3,±1), a =
√

3aAB (4)

on the graphene sheet, where aAB is the distance between
adjacent two A, B carbon atoms. Let a vector oriented in
the circumferential direction of the CNT and a vector par-
allel to the cylinder axis of the CNT or perpendicular to Ch
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Figure 2: Circumferential and axial vectors Ch, T on CNT.

be denoted respectively by Ch and T. They are shown in
Fig. 2. We express Ch with e1 and e2 as

Ch = (Ch,x,Ch,y) = C1e1 +C2e2 (5)

Length of Ch is given by

|Ch| = a
√

C2
1 +C2

2 +C1C2 (6)

We set the length as the circumferential length of the CNT.
Then, the diameter of the CNT is

dr =
|Ch|
π

(7)

In this paper, we assume that |Ch| ≫ aAB. We set vector T
as

T = t1e1 + t2e2 (8)

t1 =
2C1 +C2

dr
, t2 =

C1 + 2C2

dr

Then, the length of T is

|T| =
√

3|Ch|
dr

(9)

If the vectors Ch and T take particular directions, the wave
function of electrons on the CNT can be a solution of Eq.
(1) with the periodic condition

Ψ(x, y, t) = Ψ(x+mCh,x, y+nCh,y, t), m, n: integers (10)

being satisfied.

3. Equation of Continuity

Let the probability density function and the pseudospin
density of an electron on a graphene or a CNT be denoted
by ρ(x, y, t) and sx(x, y, t). In addition, we introduce another
function sy(x, y, t). They are given by

ρ(x, y, t) = ψA(x, y, t)ψ∗A(x, y, t)+ψB(x, y, t)ψ∗B(x, y, t) (11)

sx(x, y, t) = 2Re(ψ∗A(x, y, t)ψB(x, y, t)) (12)

sy(x, y, t) = 2Im(ψ∗A(x, y, t)ψB(x, y, t)) (13)

and have the following relations:

|ψA(x, y, t) ± ψB(x, y, t)|2 = ρ(x, y, t) ± sx(x, y, t) (14)

|ψA(x, y, t) ± iψB(x, y, t)|2 = ρ(x, y, t) ∓ sy(x, y, t) (15)

Let the complex conjugates of Ψ, σx/y, and k̂x,y be de-
noted byΨ∗, σ∗x/y, and k̂∗x,y, respectively. Then, the complex
conjugate equation of Eq. (1) is given by

−i~
∂

∂t
Ψ∗(x, y, t) =[

~vF

(
σ∗xk̂∗x + σ

∗
y k̂∗y

)
+ V(x, y)

]
Ψ∗(x, y, t) (16)

Adding the innor products between Eq. (1) and Ψ∗ and
between Eq. (16) and Ψ, we obtain

∂

∂t
(ψA(x, y, t)ψ∗A(x, y, t) + ψB(x, y, t)ψ∗B(x, y, t)) (17)

= −vF(
∂

∂x
,
∂

∂y
) ·

((ψ∗A(x, y, t)ψB(x, y, t) + ψA(x, y, t)ψ∗B(x, y, t)),
−i(ψ∗A(x, y, t)ψB(x, y, t) − ψA(x, y, t)ψ∗B(x, y, t)))T

Equation (17) can be expressed as

∂

∂t
ρ(x, y, t) + divJ = 0 (18)

J = vF(sx, sy)T (19)

Since Eq. (18) is so called an equation of continuity, J is
considered as probabilistic current. When the wave func-
tion of Eq. (1) is a plane wave give by

Φ(x, y, t) =
(

1
exp(iθ)

)
exp(i(kxx+ kyy)) exp

(
−i

E(kx, ky)
~

t
)

(20)

E(kx, ky) =
√

k2
x + k2

y , θ = arctan
(

ky

kx

)
(21)

the directions of J is given by θ, which coincides with the
direction of the propagation ofΦ. Then, it is inevitable that
Eq. (18) has been derived.

4. Probabilistic Model

A model to be proposed is a hexagonal lattice whose
sites A and B are distinguished, as shown in Fig. 1. A
virtual electron particle moves from a cite to one of three
adjacent sites randomly in a unit time ∆t. We explain the
random motion in detail. We denote three vectors from a
site A to its three adjacent sites B by ai, i = 1, 2, 3, as
shown in Fig 3, and probabilities that a particle on the site
A moves to the three sites B are denoted by pi. The three
vectors are give by

a1 = e1 −
1
3

(e1 + e2) (22)

a2 = e2 −
1
3

(e1 + e2) (23)

a3 = −(a1 + a2) (24)
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Figure 3: Three vectors from site A to its three adjacent
sites B.

When the particle does not stay in an identical site for more
than one unit time, we have

3∑
i=1

pi = 1 (25)

From the discussion at the end of Section 3, a wave packet
with momentum distributed around (kx, ky) also propagates
in the direction of θ approximately. Then, the expectation
of the velocity of the particle should be proportional to the
probabilistic current, which is represented by

3∑
i=1

piai = bJ, Proportional constant: b ∈ R (26)

Equations (25) and (26) are combined as 1
bvF sx

bvF sy

 =
 1 1 1

a1,x a2,x a3,x
a1,y a2,y a3,y


 p1

p2
p3

 (27)

where (ai,x, ai,y)T = ai, i = 1,2,3. From Eq. (27), probabili-
ties pi are obtained as p1

p2
p3

 = 1
3∆

 1 + 2a1 · bJ
1 + 2a2 · bJ
1 + 2a3 · bJ

 (28)

∆ = a1 × a2 + a2 × a3 + a3 × a1 (29)

where · and × are inner and outer product operators. Coef-
ficient b should be chosen so that pi ≥ 0.

By solving Eq. (1), computing Eq. (19) with the solu-
tion Ψ(x, y, t), and using Eq. (28), we determine pi. Prob-
abilities that the particle moves from a site B to the three
adjacent sites A are determined similarly. Then, sample
trajectories of the random motion of the particle can be ob-
tained.

5. Numerical Experiments

Let (x′, y′) be a two dimensional orthogonal coordinate
system with axes parallel to Ch and T. Suppose that the new

coordinate system is obtained by rotating (x, y) coordinate
system by ϕ. The wave function Ψ’(x′, y′, t) of Eq. (1)
with coordinate (x, y) replaced by (x′, y′) has the following
relation with Ψ(x, y, t):

Ψ′(x′, y′, t) =

 exp(i
ϕ

2
)ΨA

exp(−i
ϕ

2
)ΨB

 (30)

From Eqs. (11), (12), and (30), we see that the probability
density function and the pseudospin density are conserved
on (x′, y′) plane. Then, we may denote both coordinate sys-
tems on graphene and CNT by the same denotation (x, y).

We will deterimne a wave function in the form of wave
packet. The initial conditions of the wave packet are set
as follows: Center position: (x0, y0), Kinetic momenta:
~(kx0, ky0), Variances of the momenta: σkx = σky = σk. The
initial form of the packet can then be expressed as

φ0(kx, ky) =
1

√
2πσk

exp

−1
4

(
kx − kx0

σk

)2

(31)

−1
4

(
ky − ky0

σk

)2

− ikxx0 − ikyy0


The evolving wave packet is expanded in a series of plane
wave solutions (20). Its continuation form is given by

Ψ(x, y, t) =
∫ ∫

Φ(x, y, t)φ0dkxdky (32)

If the integration on ky is discretized with step size of ∆ky

given by

∆ky =
2π
|Ch|

(33)

that is, Eq. (32) is in the form of the Riemann sum, the
wave packet satisfies periodic condition (10). Then, a
packet propagating on a CNT is obtained.

Using wave function (32), we compute probabilistic cur-
rent J from Eqs. (12), (13), and (19) and then probabil-
ities (28) are determined. Figure 4 shows a wave packet
contour-plotted at t = 0 and 30 and a sample trajectory of a
virtual electron particle between time interval [0, 30]. They
are computed on the following conditions: aAB = 0.5, ~kx0
= 10 · cos(π/4), ~ky0 = 10 · sin(π/4), σk = 0.2, and ∆t = 0.4.
Figure 5 shows another pair of a wave packet and a sample
trajectory computed on the other conditions that aAB = 1.0,
~kx0 = 10 · cos(π/3), ~ky0 = 10 · sin(π/3), σk = 0.2, and
∆t = 0.6. We see that both the wave packet and the virtual
electron particle move almost the same distances in almost
the same directions on each condition set.

6. Conclusions

We have presented a method to compute sample trajecto-
ries of electrons on nanocarbon materials. Our future sub-
jects include developing the method so that the trajectories
distribute in accordance with the probability density func-
tion.
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Figure 4: A wave packet at t = 0 and 30 and a sample trajectory for time interval [0, 30] when θ = π/4.

Figure 5: A wave packet at t = 0 and 30 and a sample trajectory for time interval [0, 30] when θ = π/3.
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