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Abstract—This paper considers a spiking neuron model
with two slopes and triangular wave base signal. The state
of this neuron repeats a integrate-and-fire dynamics and the
slope of the state is alternatively changed at every reset-
ting. We focus on the timing of the spike phase and derive
the spike phase map. Using the map, we consider behavior
of the neuron. It is shown that the spiking neuron exhibits
not only chaos and periodic phenomena but also the super-
stable and co-existence phenomena.

1. Introduction

This paper considers a spiking neuron model with two
slopes and triangular wave base signal. The state variable
of this spiking neuron operates a integrate-and-fire dynam-
ics. The state has a constant slope and rises with time. If
the state reaches the threshold line, the neuron outputs a
spike and the state resets to the triangular wave base signal
where the resetting and output are instantaneous and simul-
taneous. Next, the state rises with another constant slope.
After reaching the threshold and resetting to the base sig-
nal, the state again rises with the first slope. Repeating
above dynamics, the neuron exhibits nonperiodic and peri-
odic trajectory and corresponding to the output of the spike.

In order to consider the generating phenomenon, we fo-
cus on the timing of the spike and derive the spike phase
map. Since this map is the return map and piecewise lin-
ear, it has advantage that we can analyze rigorously. When
the parameters vary, the shape of the map, the slope of the
segment and the number of discontinuous points change.
Using the map and Lyapunov exponent, we show that the
neuron generates various phenomena. In addition, the map
exhibits the superstable periodic orbit (SSPO) [1] with
various period and co-existence phenomena of chaos and
SSPO. These phenomena are also shown, using the map.

Many papers have been studied artificial neuron mod-
els [2]-[4] and the spiking neuron is a kind of the model.
The spiking neuron exhibits various nonlinear phenomena
as shown in this paper though a simple model. Ref. [5] has
studied for bifurcation phenomena. Using the spike-output
and two neurons, the pulse-coupled system has been stud-
ied in Ref. [6]. These investigation results are basic for
consideration of synchronization phenomenon. In addition,
applications for the analog-to-digital converters have been
considered to encode the timing of the spike [7]-[8]. We
think that discussion and consideration in this paper are ap-
proach to advance in respect of above investigation.
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Figure 1:Basic dynamics of the spiking neuron.
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Figure 2:An example of the waveform and output.s1 = 2.4, s2 =

1.7, k = 3.7.

Previous work [5] has studied the spiking neuron model
with triangular wave base signal. However the slope of the
state in Ref. [5] is fixed one constant slope.

2. Basic dynamics and typical phenomena of the neu-
ron

The dynamics of targeted spiking neuron in this paper is
described by Equation (1).

{
dx
dτ = s1, y = 0 for x < 0 andl is even,
dx
dτ = s2, y = 0 for x < 0 andl is odd,

x(τ+) = b(τ+), y(τ+) = 1, if x ≥ 0,
(1)

whereτ, x andy are dimensionless time, state variable and
output of the neuron. Letl be the number of times at which
the state hits threshold levelx = 0 and l is nonnegative
integer. The base signalb(τ) is triangular waveform with
period 1 as follows.

b(τ + 1) = b(τ),

b(τ) =

{ −k(τ − 1
4) − 1 for 0≤ τ < 0.5,

k(τ − 3
4) − 1 for 0.5 ≤ τ < 1.

(2)

- 145 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016



n
τ

1+n
τ

0

1

3

5

1 3 5

Figure 3:Spike position map.s1 = 2.4, s2 = 1.7, k = 3.7.

This neuron has three parameters: slopes of the state vari-
ables1, s2 and slope of the base signalk. s1, s2, k are real
parameters and we restrict to 0< s1,0 < s2,0 < k < 4,
and the initial state−1 < x(0) < 0. An example of the
dynamics is shown in Fig. 1. At first, the statex(τ) start-
ing from the initial statex(0) = x0 rises with time where
the slope iss1. If x reaches the threshold linex = 0, the
spikey is outputted and the statex resets to the base signal
b(τ). For simplicity, we assume that the spike-output and
resetting are instantaneous and simultaneous. Next,x rises
with another slopes2. If x again reaches the threshold line,
the spike is outputted andx resets to the baseb(τ) instanta-
neously. The slope of the state is alternately changed tos1

ands2 at every resetting. The spiking neuron repeats above
dynamics. Fig. 2 shows an example of the time waveform.
We note that Ref. [5] have discussed the spiking neuron
with fixed one constant slope (s = s1 = s2) and studied for
bifurcation phenomena.

In order to consider the behavior of this neuron, we de-
fine the spike position map. As shown in Fig. 1, letτn and
τn+1 (or τ′n andτ′n+1) ben-th andn + 1-st spike positions of
odd numbers ( or even numbers ). The spike positionτn de-
termines next spike positionτ′n andτ′n determines the spike
positionτn+1. Sinceτn+1 depends onτn, the spike position
mapF can be defined as follows.

τn+1 ≡ F(τn) = F1(F2(τn)),
τn+1 ≡ F1(τ′n) = τ′n − 1

s1
b(τ′n),

τ′n ≡ F2(τn) = τn − 1
s2

b(τn),
(3)

where functionsF1 andF2 are described theoretically and
are the same as those of the system in Ref. [5]. An example
of the spike position map is show in Fig. 3. This map is
piecewise linear and the shape is varied by changing the
parameters.

Here we introduce the phaseθ as new variable and define
the spike phaseθn ≡ τn mod1 andθ′n ≡ τ′n mod1. That is,θn

andθ′n denote decimals ofτn andτ′n. We can consider the
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Figure 4:Typical spike phase map wheres1 = 2.4. (a) Chaotic
orbit for s2 = 1.4 andk = 3.7. (b) Chaotic orbit fors2 = 3.2 and
k = 3.7. (c) Stable fixed points fors2 = 1.4 andk = 1.7. (d)
Periodic orbit fors2 = 3.2, k = 1.7.

same as the spike position map for the spike phase because
θn+1 depends onθn. Therefore, we define the spike phase
map f as follows.

θn+1 = f (θn) = g1(θ′n) mod 1,
θ′n = g2(θn) mod 1.

(4)

g1(θ′n)=

{
(1 + k

s1
)θ′n + 1

s1
(1− k

4) for 0 ≤ θ′n < 0.5
(1− k

s1
)θ′n + 1

s1
(1 + 3k

4 ) for 0.5 ≤ θ′n < 1;

g2(θn)=

{
(1 + k

s2
)θn + 1

s2
(1− k

4) for 0 ≤ θn < 0.5
(1− k

s2
)θn + 1

s2
(1 + 3k

4 ) for 0.5 ≤ θn < 1.

(5)

Functionsg1 andg2 are described theoretically and are the
same as those of the system in Ref. [5]. Fig. 4 shows exam-
ples of the spike phase map. Although the spike phase map
is piecewise linear, discontinuous points appear because of
taking modulus for the spike phase. The parameters of Fig.
4 (a) correspond to those of Fig. 3.

In order to consider behavior of the spike phase map, we
describe some definitions as follows.

Definition1: A point θn is said to be a fixed point if
θn = f (θn). A point θn is said to be a periodic point with
periodk if θn = f k(θn), θn , f j(θn) for 1 ≤ j < k where
f k denotes thek-fold composition of f and k > 1. The
periodic points with periodk are said to be unstable ( or
stable) for initial state if|D f k(θn)| > 1 (or |D f k(θn)| < 1),
whereD f ≡ d

dθn
f . An orbit of the stable periodic points

is referred to as stable periodic orbit. Iff (I ) ⊆ I and there
exists some positive integerl such that|D f l(θ1)| ≥ 1 for
almost allθ1 ∈ I whereI ≡ [0,1], then the orbit is unstable
and the mapf is said to generate chaos [9].
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Figure 5: Characteristics for changing ofs2 where s1 =

2.4 andk = 3.7. (a) Bifurcation diagram. (b) Lyapunov
exponent.

Fig. 4 (a) and (b) exhibit chaotic orbits. Fig. 4 (c) has
a fixed point (black circle) and exhibits periodic orbit with
period 1. Fig. 4 (d) exhibits periodic orbit with period
7. The map exhibits a variety of behavior by changing the
parameters.

We show bifurcation diagram and Lyapunov exponent
λn for s2 in Fig. 5 whens1 = 2.4 andk = 3.7 are fixed,
where this figure corresponds to Fig. 4 (a) and (b). In these
parameters, The range which has positive Lyapunov expo-
nent is wide: the range generating chaotic orbit is wide. As
shown in Fig. 4 (a) and (b), when the parameterk is large,
the slope of the segment on the map becomes steep and
the orbit tends to be unstable. Therefore, the map tends to
exhibit chaos.

Possible range which value ofθn takes is wide in the
neighborhood ofs2 = 1.5, however possible range is nar-
row in the neighborhood ofs2 = 3.5. θn is timing of the
spike-output. In the neighborhood ofs2 = 1.5, it is shown
that spike timings spread out in the range [0,1]. In the
neighborhood ofs2 = 3.5, it is shown that spike timings
concentrate in a local region. Although both these phenom-
ena are qualitatively chaotic, we can see that characteris-
tics of the spike-output are different. In the spiking neuron
model, the analog input is encoded through the spike tim-
ing and applications to the analog-to-digital converter have
been studied in Refs. [7] and [8]. We think that investiga-
tion of the spike phase and spike-output characteristics are
important but it is in future works.

Fig. 6 shows bifurcation diagram and Lyapunov expo-
nentλn for s2 whens1 = 2.4 andk = 1.7 are fixed, where
this figure corresponds to Fig. 4 (c) and (d). Whenk = 1.7,
the map has some parts of gradual slope as shown in Fig. 4
(c) and (d) becausek is small. Therefore, the orbit tends to
become stable and tends to exhibit periodic orbit. In addi-
tion, various periodic orbits exist by changing the parame-
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Figure 6: Characteristics for changing ofs2 where s1 =

2.4 andk = 1.7. (a) Bifurcation diagram. (b) Lyapunov
exponent.
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Figure 7: Examples of the SSPOs wheres1 = 2.4. (a)
s2 = 1.7 andk = 1.7. (b) s2 = 3.9 andk = 3.9.

ters and the range which has negative Lyapunov exponent
is wider as compared with Fig. 5.

3. Various interesting phenomena

In Section 2, we show that this spiking neuron exhibits a
variety of chaotic and periodic phenomena. In this section,
more interesting phenomena are shown in using the spike
phase map.

3.1. Superstable periodic orbits (SSPOs)

If the parameterss1 = k or s2 = k is fixed, the spike
phase map has a flat part: there is the segment with the
slope 0. Typical spike phase map is shown in Fig. 7. Here
we describe the definition in respect of above as follows.

Definition2: The periodic points with periodk are said
to be superstable for initial state if|D f k(θn)| = 0. An orbit
of the superstable periodic points is referred to as super-
stable periodic orbit (SSPO).

In Fig. 7 (a), the map has a fixed point with the slope 0
and therefore exhibits the superstable fixed point (or SSPO
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Figure 8: Examples of the co-existence phenomena where
k = 3.7. (a) and (b) are the co-existence phenom-
ena of chaos and stable fixed point. (c) and (d) are the
co-existence phenomena of chaos and SSPO. (a)s1 =

2.55, s2 = 2.7 andx(0) = −0.8. (b) s1 = 2.55, s2 = 2.7
andx(0) = −0.3. (c) s1 = 2.4, s2 = 3.7 andx(0) = −0.1.
(d) s1 = 2.4, s2 = 3.7 andx(0) = −0.8.

with period 1). We note that Lyapunov exponent is negative
infinity when the map exhibits the SSPO. In the steady state
for Fig. 7 (b), we can see that the orbit starting from the
flat segment returns to the flat segment. This map exhibits
the SSPO with period 3. This neuron can generate various
SSPOs by changing the parameters.

3.2. Various co-existence phenomena

Although the parameters of the system are same, for dif-
ferent initial state, the system exhibits different behavior in
the steady state. This phenomenon is called co-existence
phenomenon. Examples of the co-existence phenomenon
are shown in Fig. 8. Fig. 8 (a) and (b) are the same pa-
rameterss1 = 2.55, s2 = 2.7 andk = 3.7, however the
initial states are different. The initial state isx(0) = −0.8
in Fig. 8 (a) and isx(0) = −0.3 in Fig. 8 (b). We can
see that Fig. 8 (a) exhibits chaotic orbit and Fig. 8 (b) ex-
hibits periodic orbit ( stable fixed point) in the steady state.
Therefore, this neuron exhibits co-existence phenomenon
of chaotic and periodic orbit fors1 = 2.55, s2 = 2.7 and
k = 3.7. Fig. 8 (c) and (d) also have the same parameters
s1 = 2.4, s2 = 3.7 andk = 3.7 and the initial states are
different. We can see that Fig. 8 (c) exhibits chaotic orbit,
however the orbit in Fig. 8 (b) hits the flat segment and the
SSPO with period 2 is generated. In this case, this neuron
exhibits co-existence phenomenon of chaos and SSPO for

s1 = 2.4, s2 = 3.7 andk = 3.7. In Fig. 7 (a), we can see
that the map has the superstable fixed point (black circle)
while also has stable fixed point in the lower left part. In
this case, this neuron exhibits co-existence phenomenon of
the SSPO and periodic orbit. Proposed our spiking neuron
can exhibit various co-existence phenomena and we think
that very complicated bifurcation phenomena occur.

4. Conclusions

In this paper, a spiking neuron model with two slopes
and triangular wave base signal has been studied. We de-
rive the spike phase map and consider generating phenom-
ena. By changing the parameters the spiking neuron ex-
hibits chaos and periodic phenomena. We can see that the
neuron exhibits various SSPOs and co-existence phenom-
ena for some parameters. In the future, we intend to ana-
lyze bifurcation phenomena and consider characteristics of
the spike-output.
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