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Abstract—This paper studies various periodic orbits
and their stability in dynamic binary neural networks with
signum activation function. The network can generate var-
ious binary periodic orbits and the dynamics is integrated
into a digital return map defined on a set of points. Per-
forming basic numerical experiments, it is shown that the
network can generate various periodic orbits and ternary
{−1, 0,+1} connection parameters can reinforce stability of
the periodic orbits.

1. Introduction

The dynamic binary neural network (DBNN) is con-
structed by applying a delayed feedback to a feed forward
binary neural network with signum activation [1]-[5]. De-
pending on connection parameters, the DBNN can gener-
ate a variety of binary periodic orbits (BPOs). The DBNN
is included in digital dynamical systems such as cellular
automata [8] and digital spiking neurons [10]. These dig-
ital dynamical systems are applicable to logical/sequential
circuits, image processing systems, and UWB communica-
tion systems. Analysis of DBNN is important form both
fundamental and application viewpoints. However, analy-
sis of DBNN is hard because the DBNN has a large num-
ber of parameters and can generate a large variety of peri-
odic/transient phenomena.

This paper analyzes dynamics of a simple class of
DBNN. First, we introduce that the dynamics of the DBNN
is integrated into a digital return map (Dmap) from a set
of lattice points to itself. The Dmap can be regarded
as a digital version of analog return map represented by
the logistic map [11]. We then analyze three types of 6-
dimensional DBNNs: the connection parameters wi j are in-
teger, they are binary wi j ∈ {−1,+1}, and they are ternary
wi j ∈ {−1, 0,+1}, Such 6-dimensional DBNNs are applica-
ble to control signal of basic dc/ac and ac/dc power con-
verters [3] [5].

Performing numerical experiments it is shown that (1)
the binary connection parameters are able to realize the al-
most same stability of BPO as the integer connection pa-
rameters, (2) the ternary connection parameters are able
to reinforce stability of the BPO, and (3) the binary and
ternary connection parameters can suppress spurious mem-
ories.

2. Dynamic Binary Neural Networks

The DBNN is constructed by applying a delayed feed-
back to a feed-forward network with the signum activation
function. The dynamics is described by

xt+1
i = sgn

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

wi j xt
j − Ti

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

sgn(x) =
{
+1, for x ≥ 0
−1, for x < 0 i = 1 ∼ N

where xt is a binary state vector at discrete time t and
xt

i ∈ {−1,+1} ≡ B is the i-th element. The connection
parameters wi j and the threshold parameters are integer.

In order to visualize the dynamics DBNN, we intro-
duce the Dmap. The domain of the DBNN is a set of

Figure 1: (a) DBNN. wi j = 0 means no connection. The
threshold parameters Ti are shown in the circles. (b) Dmap.
DBNN and Dmap. Red orbit denotes TBPO. Green orbit
denotes a BPO. γ = 10/16

- 485 -

2016 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2016, Yugawara, Japan, November 27th-30th, 2016



binary vectors BN that is equivalent to a set of points
LD = (C1, · · · ,C2N ), Ci ≡ i/2N. Hence the dynamics of the
DBNN can be integreted into the digital return map (Dmap)
from LD to itself:

xt+1 = FD(xt), xt ≡ (xt
1, · · · , xt

N) ∈ BN (2)

Figure 1 illustrates the Dmap for N = 4 where bi-
nary code is used to express L4 = {C1, · · · ,C16}: C1 ≡
(−1,−1,−1,−1) · · · C16 ≡ (+1,+1,+1,+1). Since the
number of lattice points is 2N , direct memory of all the
inputs/outputs becomes hard/impossible as N increases.
However, in the DBNN, the number of parameters is poly-
nomial N2 + N.

Since the number of the lattice points is finite, the steady
states are BPOs defined as the following.

A point θp ∈ LD is said to be a periodic point (PEP)
with period p if Fp (θp) = θp and Fk(θp) � θp for 1 ≤ k < p
where Fp is the p-fold composition of F. Especially, a PEP
with period 1 is said to be a fixed point. A sequence of the
PEPs, {F(θp), · · · , Fp (θp)}, is said to be a binary periodic
orbit (BPO).

In Fig.1 the Dmap has one BPO with period 3 and BPO
with period 2. Depending on the initial condition, the
DBNN exhibits either BPO.

3. Teacher signal and stability

We consider storage of one BPO into the DBNN. The
teacher signal binary periodic orbit (TBPO) with period T
is described by

z1,z2, · · · ,zT , zi = (z1
1, · · · , zi

N ) ∈ BN

zi = z j for |i − j| = T, zi � z j for |i − j| � T (3)

For simplicity, the period T is assumed to be order of N. In
order to determine connection parameters wi j, we use three

Table 1: TBPO example 1
z1 (+1, −1, −1, −1, −1, +1)
z2 (+1, +1, −1, −1, −1, −1)
z3 (−1, +1, +1, −1, −1, −1)
z4 (−1, −1, +1, +1, −1, −1)
z5 (−1, −1, −1, +1, +1, −1)
z6 (−1, −1, −1, −1, +1, +1)

Table 2: TBPO example 2
z1 (+1, −1, −1, −1, +1, +1)
z2 (+1, +1, −1, −1, −1, +1)
z3 (+1, +1, +1, −1, −1, −1)
z4 (−1, +1, +1, +1, −1, −1)
z5 (−1, −1, +1, +1, +1, −1)
z6 (−1, −1, −1, +1, +1, +1)

methods A parameter condition for storage of TBPO.

Integer connection: wi j = ci j =

T∑
τ=1

zτ+1
i zτj (4)

Binary connection: wi j = bi j =

{
+1 for ci j ≥ 0
−1 for ci j < 0 (5)

Ternary conection: wi j = di j ∈ {1, 0,+1}
di j is given by zero-insertion algorithm in [6].

(6)
Ref. [6] gives a sufficient condition of parameters for stor-
age of TBPO. Referring to the condition, as connection pa-
rameters wi j are given, the threshold parameters Ti can be
determined theoretically.

Here we define stability of TBPO. A TBPO is said to
be stable if at least one initial point (except for the TBPO)
falls into the TBPO. A TBPO is said to be globally stable
if all initial points into the TBPO. In order to characterize
the global stability, we introduce a simple feature quantity

γ =
# Initial points falling into the TBPO

2N (7)

where T/2N ≤ γ ≤ 1. If γ = 1 then the TBPO is globally
stable. In Fig. 1, 10 initial points fall into the TBPO with
period 3 and γ = 10/16.

4. Numerical experiment

This paper considers two examples of TBPOs with pe-
riod 6. For N = 6, Table 1 shows the first TBPO corre-
sponding to a control signal of a basic AC/DC converter.
Applying the three kinds of connection parameters in Eqs.
(4) to (6), the first TBPO can be stored into the DBNN. Ta-
bles 3, 4, and 5 show integer, binary, and ternary connection
parameters, respectively. Figures. 2, 3, and 4 show corre-
sponding three Dmaps. The integer, binary, and ternary
connection parameters give γ = 17/64, γ = 12/64, and
γ = 1, respectively.

Table 2 shows the second TBPO corresponding to a con-
trol signal of a basic AC/DC converter. Applying the three
kinds of connection parameters in Eqs. (4) to (6), the sec-
ond TBPO can be stored into the DBNN. Tables 6, 7, and
8 show integer, binary, and ternary connection parameters,
respectively. Figures. 5, 6, and 7 show corresponding three
Dmaps. The integer, binary, and ternary connection param-
eters give γ = 42/64, γ = 42/64, and γ = 1, respectively.

In these results, we can see the following.

• The binary connection can realize the almost same
global stability as the integer connection.

• The ternary connection with zero elements can realize
global stability. The global stability is impossible in
integer and binary connections.

• The binary and ternary connections can suppress seri-
ous memories in the case of integer connection.
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Table 3: Integer connection parameters for example 1

i ci1 ci2 ci3 ci4 ci5 ci6 Ti

1 +2 −2 −2 −2 +2 +6 4
2 +6 +2 −2 −2 −2 +2 4
3 +2 +6 +2 −2 −2 −2 4
4 −2 +2 +6 +2 −2 −2 4
5 −2 −2 +2 +6 +2 −2 4
6 −2 −2 −2 +2 +6 +2 4

Table 4: Binary connection parameters for example 1

i di1 di2 di3 di4 di5 di6 Ti

1 +1 −1 −1 −1 +1 +1 2
2 +1 +1 −1 −1 −1 +1 2
3 +1 +1 +1 −1 −1 −1 2
4 −1 +1 +1 +1 −1 −1 2
5 −1 −1 +1 +1 +1 −1 2
6 −1 −1 −1 +1 +1 +1 2

Table 5: Ternary connection parameters for example 1

i di1 di2 di3 di4 di5 di6 Ti

1 +1 −1 −1 −1 +1 +1 2
2 +1 +1 −1 0 −1 +1 1
3 +1 +1 +1 −1 −1 −1 2
4 −1 +1 +1 0 −1 −1 2
5 −1 −1 0 +1 0 −1 2
6 −1 −1 −1 +1 +1 +1 2

5. Conclusions

A class of 6-dimensional DBNNs has been studied in
this paper. In order to visualize the DBNN dynamics, the
Dmap is introduced. In order to consider the stability of
TBPO, global stability is defined and a simple feature quan-
tity γ is introduced.

In basic numerical experiments. we have shown that the
ternary connection can realize global stability and the bi-
nary/ternary connection can suppress spurious memories.

Future problems include analysis of 2DBNN with sparse
connections, analysis of deep DBNNs, and engineering ap-
plications.
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Figure 2: Dmap for Table 3. Red orbit: TBPO. Green orbit:
Spurious BPO. γ = 17/64

Figure 3: Dmap for Table 4. Red orbit: TBPO. Green orbit:
Spurious BPO. γ = 12/64

Figure 4: Dmap for Table 5. Red orbit: TBPO. γ = 1

Figure 5: Dmap for Table 6. Red orbit: TBPO. Green orbit:
Spurious BPO. γ = 42/64

Figure 6: Dmap for Table 7. Red orbit: TBPO. Green orbit:
Spurious BPO. γ = 42/64

Figure 7: Dmap for Table 8. Red orbit: TBPO. γ = 1
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