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Abstract—This paper considers super-stabilization of
periodic spike-train from the digital spiking neuron consist-
ing of two shift registers connected by a wiring. Depend-
ing on the wiring, the neuron can generate various peri-
odic spike-trains. In order to super-stabilize a desired peri-
odic spike-train, we present a simple deterministic rewiring
method. The super-stabilized periodic spike-trains are ap-
plicable to robust and reliable encoders in multiplexing
communication systems.

1. Introduction

The digital spiking neuron (DSN) is a kind of degital dy-
namical system inspired by integrate-and-fire neuron mod-
els [1]-[3]. The DSN is constructed by two shift registers
connected by a wiring. Depending on the wiring pattern,
the DSN can generate various periodic spike-trains (PSTs)
and transient super-trains to the PSTs. The DSNs are ap-
plicable to spike-based communication systems and spike-
based learning systems [1]-[7].

This paper considers super-stabilization of a desired PST
in the DSN The super-stability means that almost all initial
points fall directly (instantaneously) into the PST [3]. The
super-stabilized PST is applicable to a robust and reliable
encoder in multiplexing communication systems. In order
to super-stabilize a PST, we introduce a super-stabilizing
wiring method (SSWM [3]). The SSWM is a simple deter-
ministic method that re-wires connection between two shift
registers of the DSN and can super-stabilize a desired PST.

The dynamics of the DSN is described by a digital spike
map (Dmap, [4] [5]). The Dmap is defined on a set of
points and can be regarded as a digital version of ana-
log one-dimensional map such as the logistic map [6].
Since the domain of the Dmap is a set of finite number
of points, the Dmap cannot generate chaos but a variety
of periodic/transient phenomena. The DSN and Dmap are
well suited for computer-aided precise analysis and FPGA-
based hardware implementation [1].

The Dmap is related to several digital dynamical systems
such as logical/sequential circuits [8], cellular automata [9]
[10], and dynamic binary neural networks [11] [12]. Such
systems are applicable to information compression, signal
processing, and control of switching power converters. Sta-
bility analysis of the Dmap and DSN can contribute not

only to basic study of nonlinear dynamics but also to engi-
neering applications.

2. Digital Spiking Neuron

Fig. 1 (a) illustrates the DSN consisting of two shift reg-
isters connected by a wiring. The left and right shift regis-
ters are referred to as P-cells and X-cells. The P-cells con-
sist of M elements and operates as a pacemaker with period
M. Let P (τ) ≡ (P1(τ), · · · , PM(τ)) denote the P-cells and
let Pi(τ) ∈ {0, 1} be the i-th element. The dynamics is de-
scribed by

Pi(τ) =

{
1 if τ = i + nM
0 otherwise

(1)

where i ∈ {1, · · · ,M} and n denotes integers.
The X-cells consist of N elements and are state variables

corresponding to an action potential of an analog neuron.
Let X(τ) ≡ (X1(τ), · · · , XN(τ)) denote the X-cells and let
Xj(τ) ∈ {0, 1} be the j-th element. An element of the P-
cells is connected to either element of the X-cells in one-
way. The connection is defined by the wiring vector

a = (a1, · · · , aM), ai = j if Pi is connected to Xj

For example, the wiring vector for Fig. 1 (a) is

a = (4, 6, 10, 6, 6, 12, 7, 12)

Using the wiring vector, we define the base signal with pe-
riod M:

B(τ) ≡ (B1(τ), · · · , BN(τ)), B(τ + M) = B(τ)

Bi(τ) =

{
1 if aτ = i
0 otherwise

(2)

where τ ∈ {1, 2, · · · ,M} and i ∈ {1, 2, · · · ,N}. An example
of B(τ) is illustrated in Fig. 1 (b). In the X-cells, an initial
condition is assumed to be{

Xk(1) = 1 for some k
Xj(1) = 0 for j � k

(3)

where k ∈ {1, 2, · · · ,N} and j ∈ {1, 2, · · · ,N}. Only one
element can be 1. The dynamics is described by

Xj+1(τ + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Xj(τ) = 1 for j = 1 ∼ N
1 if XN(τ) = 1 and Bj+1(τ) = 1
0 otherwise

(4)
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If the top element of X-cells is active then the DSN outputs
a spike Y(τ) = 1 and generates a spike-train as shown in
Fig. 1 (b)

Y(τ + 1) =

{
1 if XN(τ) = 1
0 otherwise

(5)

For simplicity, we assume

N = 2M − 1, 1 < ai − 1 ≤ M (6)

where i ∈ {1, 2, · · · ,M}. In this case, a spike appears once
per one clock period and the n-th spike appears in the n-th
interval {(n − 1)M, · · · , nM} [2] [3]. Let θn denote the n-th
spike-phase such that

Y(τ + 1) =

{
1 for τ = (n − 1)M + θn
0 otherwise

(7)

where θn ∈ {1, 2, · · · ,M} and n denotes integers. A spike-
train is represented by a sequence of spike phases {θn}.
Since the n-th spike determines the (n+ 1)-th spike, we can
define the degital spike map (Dmap) of the spike-phase:

θn+1 = F(θn), θn ∈ {1, 2, · · ·M} (8)

An example of the Dmap is shown in Fig. 1 (b). The deriva-
tion process and theoretical formula of Dmaps can be found
in [1]-[3]. That is, the dynamics of the DSN is integrated
into the Dmap. As stated earlier, the Dmap can be regarded
as a digital version of analog return maps represented by
the logistic map [6]. Although the analog map can gener-
ate chaos, the Dmap cannot generate chaos because M is a
finite number. However, the Dmap can generate a variety
of periodic/transient phenomena as suggested in [4] [5].

3. Super-stabilizaing wiring method

In order to consider stabilization of PST, we give several
definitions for the Dmap.

Definition 1: A point p ∈ LM is said to be a periodic
point with period k if p = f k(p) and f (p) to f k(p) are all
different where f k is the k-fold composition of f . A se-
quence of the periodic points {p, f (p), · · · , f k−1(p)} is said
to be a periodic orbit (PEO) with period k.

A PEO with period k ( f (p) = f k(p)) corresponds to a
PST with period Mk (Y(τ +Mk) = Y(τ)). For example, the
PEO with period 4 in Fig. 1 (a) c to the PST with period 4 in
Fig. 1 (b). Since a PEO in the Dmap is equivalent to a PST
in the DSN, we consider stabilization for the PEO in the
Dmap instead of the PST for simplicity. For convenience
to give definition of stability, we assume that the a period
of PEO is at most M/2.

Definition 2: A point q ∈ LM is said to be an eventu-
ally periodic point (EPP) with step k if the q is not a peri-
odic point but falls into some periodic point p after k steps:
f k(q) = p. An EPP with step 1 is referred to as a direct

eventually periodic point (DEPP): f (q) = p. An EPP corre-
sponds to an initial spike-position of a transient spike-train
to the PST.

Definition 3: A PEO is said to be stable if al least one
EPP falls into the PEO. A PEO is said to be super-stable if
all the EPPs are DEPP falling into the PEO. For example,
in Fig. 2, the Dmap has PEO with period 4 and the other
16 − 4 blue points are DEPPs falling into the PEO hence
the PEO is super-stable.

Here we introduce the super-stabilizing wiring method
(SSWM [3]) for a PEO. As a precondition for the SSWM,
we assume that the PEO is given by some algorithm to sat-
isfy some desired characteristics. For example, Ref. [3]
has presented a simple evolutionary algorithm that gives a
PEO of low autocorrelation.

For simplicity, we explain the SSWM for an example: a
PEO with period 3 for M = 8 (PST with period 24) in Fig.
1 (a).

αp ≡ {6, 6, 12}, α = (4, 6, 10, 6, 12, 7, 12) (9)

If other 5 elements are given by the following, we obtain
the DSN in Fig. 2 (a).

a = (6 − 1, 6, 6 − 1, 6, 6 + 1, 12, 12 + 1, 12 + 2)
= (5, 6, 5, 6, 7, 12, 13, 14)

(10)

The difference between α and a is rewiring of five blue
branches in Fig. 2 (a). In the DSN, the PEO with period
3 is super-stabilized as shown in Fig. 2 (c) where 5 blue
points are DEPPs falling directly into the PEO.

In general, if a PEO is given, the PEO can be super-
stabilized as the following. First, let the PST with period
pM be given by p elements in a wiring vector α

αp ≡ {αp1 , · · · , αpp } ⊂ {α1, · · · , αp1 , · · · , αpp , · · · , αM}
α = (α1, · · · , αp1 , · · · , αpp , · · · , αM)

(11)
The following wiring can super-stabilize the PEO.

a = (a1, · · · , aM)

ai =

{
αi if αi ∈ αp

α j + (i − j) if αi � αp, α j ∈ αp

where j is selected arbitrary from {p1, · · · , pp}.

4. Conclusions

Super-stabilization of periodic spike-trains in the DSN is
studied in this paper. In order to visualize the dynamics of
DSN, the Dmap is introduced. In order to super-stabilize a
desired periodic spike-train, the SSWM is presented.

Future problems include development of the SSWM into
various digital dynamical systems, design of basic hard-
ware that can generate super-stable spike-trains, and engi-
neering application of the SSWM.
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Figure 1: Digital spiking neuron (DSN). (a) Configuration.
(b) Time-domain waveform of the state variable X(τ) and
base signal B(τ). (c) Digital spike map. Red points con-
struct a PEO and black points are EPPs to the PEO.

Figure 2: DSN after the SSWM. (a) Configuration. (b)
Time-domain waveform of state variable and base signal.
(c) Digital spike map. Red points construct a PEO with
period 3 and blue points are DEPPs to the PEO.
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