2016 International Symposium on Nonlinear Theory and Its Applications,

Pseudo Random Binary Sequence Generated by Trace and Legendre Symbol with Non Primitive Element in $\mathbb{F}_{p^{2}}$

C. Ogawa ${ }^{\dagger}$, A. M. Arshad ${ }^{\dagger}$, Y. Nogami ${ }^{\dagger}$, S. Uehara ${ }^{\ddagger}$, K. Tsuchiya ${ }^{\dagger \dagger}$, and R. M. Zaragoza ${ }^{\ddagger \ddagger}$
\dagger Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-naka, Kita, Okayama, 700-8530, E-mail: yasuyuki.nogami@okayama-u.ac.jp.
\ddagger Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, E-mail: uehara@kitakyu-u.ac.jp. $\dagger \dagger$ Koden Electronics Co. Ltd., 2-13-24 Tamagawa, Ota-ku, Tokyo, 146-0095, E-mail:k-tsuchiya@koden-electronics.co.jp.
$\ddagger \ddagger$ Department of Electrical Engineering San Jose State University, 1 Washington Square, San Jose, CA 95192-0084, E-mail: R.Morelos-Zaragoza@IEEE.org.

Abstract

Pseudo binary random sequence has many uses such as nonce for security applications. Some of them needs to have long period and high linear complexity. The authors have proposed a generation method that uses primitive polynomial, trace function, and Legendre symbol over odd characteristic field. The preparation of primitive polynomial is not always easy. This paper shows that some non-primitive irreducible polynomials generate the same random binary sequence generated by a certain primitive polynomial. Then, some example are also introduced.

1. Introduction

There are many kinds of pseudo binary random sequence generated over finite fields. Among them, maximal length sequence (M -sequence) and Legendre sequence are well known [1],[2]. M-sequence uses trace function and Legendre sequence uses Legendre symbol. Their typical properties such as period, autocorrelation, and linear complexity have been theoretically shown. The authors have proposed a pseudo binary random sequence generated by primitive polynomial, trace function, and Legendre symbol [3]. It has long period and high linear complexity. These properties have been theoretically shown. Different from Msequence and Legendre sequence, this sequence has two parameters p and m, where p and m are the characteristic and extension degree by which the base extension field $\mathbb{F}_{p^{m}}$ is defined. In addition, in the same of M-sequence, it also needs a primitive polynomial.

In order to prepare a long period sequence for some cryptographic applications, the characteristic p or the extension degree m should be large. Accordingly, the previous sequence needs to prepare a primitive polynomial of degree m over \mathbb{F}_{p}. However, the preparation is not always easy. This paper shows some non-primitive irreducible polynomials are able to generate the same sequence generated by a certain primitive polynomial. If the condition is clearly given, the preparation of the non-primitive irreducible polynomial will be easier than that of primitive polynomial. When the
degree m is restricted to 2 , this paper not only considers the conditions but also shows some examples.

2. Preparation

This section briefly introduces some mathematical tools. Throughout this paper, p be an odd prime number.

2.1. Irreducible and primitive polynomials

Let \mathbb{F}_{p} be a prime field of odd characteristic p. When $f(x)$ of degree m over \mathbb{F}_{p} is not factorized into smaller degree polynomials over \mathbb{F}_{p}, it is called irreducible polynomial. Let ω be its zero, ω belongs to the extension field $\mathbb{F}_{p^{m}}$ and its order e is a divisor of $p^{m}-1$. It is noted that $p^{m}-1$ is the order of the multiplicative group $\mathbb{F}_{p^{m}}^{*}=\mathbb{F}_{p^{m}}-\{0\}$. Particularly when $e=p^{m}-1$, it is called a primitive polynomial and its zero is called a primitive element in $\mathbb{F}_{p^{m}}$ correspondingly. M-sequence and our previous work [3] utilize a primitive element to generate a maximal length sequence because the primitive element ω is able to represent all nonzero elements as its power $\omega^{i}, i=0,1,2, \cdots, p^{m}-2$. When $m=2$, an irreducible polynomial of degree 2 over \mathbb{F}_{p} is easily generated even if p is large.

2.2. Trace function and Legendre symbol

Consider an extension field $\mathbb{F}_{p^{m}}$. Then, trace function for $X \in \mathbb{F}_{p^{m}}$ is defined as follows.

$$
\begin{equation*}
x=\operatorname{Tr}(X)=\sum_{i=0}^{m-1} X^{p^{i}}, \tag{1}
\end{equation*}
$$

x becomes an element in \mathbb{F}_{p} and the above trace function has a linearity over \mathbb{F}_{p} as follows.

$$
\begin{equation*}
\operatorname{Tr}(a X+b Y)=a \operatorname{Tr}(X)+b \operatorname{Tr}(Y), \tag{2}
\end{equation*}
$$

where $a, b \in \mathbb{F}_{p}$ and $Y \in \mathbb{F}_{p^{m}}$. In the previous work [3], trace function is used for mapping a vector in $\mathbb{F}_{p^{m}}$ to a scalar
in \mathbb{F}_{p}. Then, Legendre symbol is calculated as follows.

$$
\begin{align*}
(a / p) & =a^{(p-1) / 2} \bmod p \\
& = \begin{cases}0 & \text { when } a=0 \\
1 & \text { if } a \text { is a non-zero QR, } \\
-1 & \text { otherwise, that is } a \text { is a QNR, }\end{cases} \tag{3}
\end{align*}
$$

where QR and QNR are abbreviations of quadratic residue and quadratic non-residue, respectively. In our previous work, Legendre symbol is used for mapping a scalar in \mathbb{F}_{p} to a signed binary value such as $\{0,1,-1\}$.

2.3. Previous work

The previous work [3] has proposed a pseudo random binary sequence generated by using primitive polynomial, trace function, and Legendre symbol as follows.

$$
\begin{equation*}
\mathcal{T}=\left\{t_{i}\right\}, t_{i}=f\left(\left(\operatorname{Tr}\left(\omega^{i}\right) / p\right)\right), i=0,1,2, \cdots, \tag{4}
\end{equation*}
$$

where $f(\cdot)$ is defined as

$$
f(x)= \begin{cases}0 & \text { if } x=0,1 \tag{5}\\ 1 & \text { otherwise }\end{cases}
$$

ω in Eq. (4) is a primitive element in $\mathbb{F}_{p^{m}}$. Then, its period is given by $2\left(p^{m}-1\right) /(p-1)$.

Let the autocorrelation with shift value x be defined by

$$
\begin{equation*}
\mathrm{R}_{\mathcal{T}}(x)=\sum_{x=0}^{n-1}(-1)^{t_{i+x}-t_{i}}, \tag{6}
\end{equation*}
$$

the autocorrelation of \mathcal{T} is given by

$$
\mathrm{R}_{\mathcal{T}}(x)= \begin{cases}\frac{2\left(p^{m}-1\right)}{p-1} & \text { if } x=0 \tag{7}\\ -2 p^{m-1}+\frac{2\left(p^{m-1}-1\right)}{p-1} & \text { else if } x=n / 2 \\ \frac{2\left(p^{m-2}-1\right)}{p-1} & \text { otherwise }\end{cases}
$$

As a small example, Figure. 1 shows the graph of the autocorrelation $\mathrm{R}_{\mathcal{T}}(x)$ with $p=7$ and $m=2$.

3. Binary sequence with non-primitive polynomial

This paper introduces, particularly when the extension degree $m=2$, some non-primitive irreducible polynomials generate the same random binary sequence generated by a certain primitive polynomial.

Figure 1: $\left|\mathrm{R}_{\mathcal{T}}(x)\right|$ with $p=7, m=2$

3.1. Motivation

First of all, when the characteristic p or the degree m are large such as used for cryptographies, preparing a primitive polynomial is not always easy. Let us consider the case that p is a large prime number and $m=2$. In this case, consider all prime factors p_{i} of $p^{2}-1$ as

$$
\begin{equation*}
p^{2}-1=\prod_{i} p_{i}^{e_{i}}, \tag{8}
\end{equation*}
$$

then check the following relation for every p_{i}.

$$
\begin{equation*}
f(x) \nmid x^{\left(p^{2}-1\right) / p_{i}}-1, \tag{9}
\end{equation*}
$$

where $f(x)$ is a randomly generated irreducible polynomial of degree 2 over \mathbb{F}_{p}.

On the other hand, generating an irreducible polynomial of an arbitrary degree over \mathbb{F}_{p} is not difficult [4]. Particularly, when every factor of the degree m divides $p-1$, it becomes quite easy. When $m=2$ as an example, using $c \in \mathbb{F}_{p}$ such that $(c / p)=-1$,

$$
\begin{equation*}
f(x)=x^{2}-c \tag{10}
\end{equation*}
$$

becomes an irreducible polynomial over \mathbb{F}_{p}. Thus, it is more practical that the same binary sequence is generated by using some non-primitive irreducible polynomial.

3.2. Example

Let us observe a small example with $p=7$ and $m=2$. Table 1 shows the result. As introduced in the previous section, irreducible binomials such as $x^{2}-3, x^{2}-5$, and $x^{2}-6$ are obtained. Applying a simple substitution such as $x \leftarrow x+1$, irreducible trinomials such as $x^{2}+2 x+5$ are obtained. Among them, there are primitive or non-primitive irreducible polynomials as shown in Table 1.

See the row (1) of the table. In this case, $x^{2}+2 x+5$, $x^{2}+4 x+6$, and $x^{2}+x+3$ are transformed from $x^{2}-2$ and generate the same binary sequence 0100001110110100 . Among these three irreducible polynomials, $x^{2}+2 x+5$ and $x^{2}+x+3$ are primitive polynomials of order $e=7^{2}-1=48$. On the other hand, $x^{2}+4 x+6$ is a non-primitive polynomial of order 16 , however it generates the same binary sequence.

Table 1: Binary sequence generated by primitive polynomial and irreducible polynomial with $p=7$ and $m=2$

	$x^{2}-3$		$x^{2}-5$		$x^{2}-6$		binary sequence \mathcal{T}
(1)	$x \leftarrow x+1$	$x^{2}+2 x+5$	$x \leftarrow x+2$	$x^{2}+4 x+6^{(*)}$	$x \leftarrow x+4$	$x^{2}+x+3$	0100001110110100
(2)	$x \leftarrow x+6$	$x^{2}+5 x+5$	$x \leftarrow x+5$	$x^{2}+3 x+6^{(*)}$	$x \leftarrow x+3$	$x^{2}+6 x+3$	0001011011100001
(3)	$x \leftarrow x+3$	$x^{2}+6 x+6^{(*)}$	$x \leftarrow x+6$	$x^{2}+5 x+3$	$x \leftarrow x+5$	$x^{2}+3 x+5$	0010000011010111
(4)	$x \leftarrow x+4$	$x^{2}+x+6^{(*)}$	$x \leftarrow x+1$	$x^{2}+2 x+3$	$x \leftarrow x+2$	$x^{2}+4 x+5$	0111010110000010

${ }^{(*)}$ They are non-primitive irreducible polynomials over \mathbb{F}_{7}. The others are all primitive polynomials.

3.3. Consideration

Since Table 1 is a small example, the primitivity of irreducible polynomial could be easily checked. However, when the characteristic p is large, the primitivity check is not always easy. According to Table 1, it is found that an irreducible polynomial of order 16 generates the same binary sequence generated by a certain primitive polynomial. In detail, it has been found that the non-primitive irreducible polynomials marked with ${ }^{(*)}$ in Table 1 have the same order 16. The authors have tested a lot of prime numbers as the characteristic p with extension degree $m=2$. According to the results, without any counter examples, the orders of the non-primitive polynomials have been given by $\left(p^{2}-1\right) / s$ and s is an odd prime factor of $p^{2}-1$.

4. Conclusion and future works

This paper has shown that, when the degree is restricted to 2 , some non-primitive irreducible polynomials are able to generate the same binary sequence generated by a certain primitive polynomial. It means that, if the condition for the non-primitive irreducible polynomials are shown clearly, primitive polynomials are not necessary for generating maximal length sequence. As a future work, the condition should be theoretically shown.

Acknowledgments

This work has been supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (A) Number 16H01723.

References

[1] S. W. Golomb, "Shift Register Sequences," HoldenDay, San Francisco, 1967.
[2] J. S. No, H. K. Lee, H. Chung, H. Y. Song, and K. Yang, "Trace Representation of Legendre Sequences of Mersenne Prime Period," IEEE Trans. on Inform. Theory, vol. 42, pp. 2254-2255, 1996.
[3] Y. Nogami, K. Tada, and S. Uehara, "A Geometric Sequence Binarized with Legendre Symbol over Odd Characteristic Field and Its Properties," IEICE Trans., vol. 97-A, no. 12, pp. 2336-2342, 2014.
[4] H. Nasu, Y. Nogami, Y. Morikawa, S. Kobayashi, and T. Sugimura, "Systematic Generation of An Irreducible Polynomial of An Arbitrary Degree m over \mathbb{F}_{p} Such That $p>m$," Convergence and Hybrid Information Technologies, Intech, pp. 303-316, 2010.

