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Abstract—Pseudo binary random sequence has many
uses such as nonce for security applications. Some of them
needs to have long period and high linear complexity. The
authors have proposed a generation method that uses prim-
itive polynomial, trace function, and Legendre symbol over
odd characteristic field. The preparation of primitive poly-
nomial is not always easy. This paper shows that some
non-primitive irreducible polynomials generate the same
random binary sequence generated by a certain primitive
polynomial. Then, some example are also introduced.

1. Introduction

There are many kinds of pseudo binary random sequence
generated over finite fields. Among them, maximal length
sequence (M-sequence) and Legendre sequence are well
known [1],[2]. M-sequence uses trace function and Legen-
dre sequence uses Legendre symbol. Their typical proper-
ties such as period, autocorrelation, and linear complexity
have been theoretically shown. The authors have proposed
a pseudo binary random sequence generated by primitive
polynomial, trace function, and Legendre symbol [3]. It
has long period and high linear complexity. These prop-
erties have been theoretically shown. Different from M-
sequence and Legendre sequence, this sequence has two
parameters p and m, where p and m are the characteristic
and extension degree by which the base extension field Fpm

is defined. In addition, in the same of M-sequence, it also
needs a primitive polynomial.

In order to prepare a long period sequence for some cryp-
tographic applications, the characteristic p or the extension
degree m should be large. Accordingly, the previous se-
quence needs to prepare a primitive polynomial of degree m
over Fp. However, the preparation is not always easy. This
paper shows some non-primitive irreducible polynomials
are able to generate the same sequence generated by a cer-
tain primitive polynomial. If the condition is clearly given,
the preparation of the non-primitive irreducible polynomial
will be easier than that of primitive polynomial. When the

degree m is restricted to 2, this paper not only considers the
conditions but also shows some examples.

2. Preparation

This section briefly introduces some mathematical tools.
Throughout this paper, p be an odd prime number.

2.1. Irreducible and primitive polynomials

Let Fp be a prime field of odd characteristic p. When
f (x) of degree m over Fp is not factorized into smaller de-
gree polynomials over Fp, it is called irreducible polyno-
mial. Let ω be its zero, ω belongs to the extension field Fpm

and its order e is a divisor of pm−1. It is noted that pm−1 is
the order of the multiplicative group F∗pm = Fpm − {0}. Par-
ticularly when e = pm − 1, it is called a primitive polyno-
mial and its zero is called a primitive element in Fpm corre-
spondingly. M-sequence and our previous work [3] utilize
a primitive element to generate a maximal length sequence
because the primitive elementω is able to represent all non-
zero elements as its power ωi, i = 0, 1, 2, · · · , pm−2. When
m = 2, an irreducible polynomial of degree 2 over Fp is
easily generated even if p is large.

2.2. Trace function and Legendre symbol

Consider an extension field Fpm . Then, trace function for
X ∈ Fpm is defined as follows.

x = Tr (X) =
m−1∑
i=0

Xpi
, (1)

x becomes an element in Fp and the above trace function
has a linearity over Fp as follows.

Tr (aX + bY) = aTr (X) + bTr (Y) , (2)

where a, b ∈ Fp and Y ∈ Fpm . In the previous work [3],
trace function is used for mapping a vector in Fpm to a scalar
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in Fp. Then, Legendre symbol is calculated as follows.(
a/
p

)
= a(p−1)/2 mod p

=


0 when a = 0,
1 if a is a non-zero QR,
−1 otherwise, that is a is a QNR,

(3)

where QR and QNR are abbreviations of quadratic residue
and quadratic non-residue, respectively. In our previous
work, Legendre symbol is used for mapping a scalar in Fp

to a signed binary value such as {0, 1,−1}.

2.3. Previous work

The previous work [3] has proposed a pseudo random
binary sequence generated by using primitive polynomial,
trace function, and Legendre symbol as follows.

T = {ti}, ti = f
( (

Tr
(
ωi

)
/p

) )
, i = 0, 1, 2, · · · , (4)

where f (·) is defined as

f (x) =

 0 if x = 0, 1,
1 otherwise.

(5)

ω in Eq. (4) is a primitive element in Fpm . Then, its period
is given by 2(pm − 1)/(p − 1).

Let the autocorrelation with shift value x be defined by

RT (x) =
n−1∑
x=0

(−1)ti+x−ti , (6)

the autocorrelation of T is given by

RT (x) =



2(pm − 1)
p − 1

if x = 0,

−2pm−1 +
2(pm−1 − 1)

p − 1
else if x = n/2,

2(pm−2 − 1)
p − 1

otherwise.

(7)

As a small example, Figure. 1 shows the graph of the au-
tocorrelation RT (x) with p = 7 and m = 2.

3. Binary sequence with non-primitive polynomial

This paper introduces, particularly when the extension
degree m = 2, some non-primitive irreducible polynomials
generate the same random binary sequence generated by a
certain primitive polynomial.

Figure 1: |RT (x)| with p = 7,m = 2

3.1. Motivation

First of all, when the characteristic p or the degree m are
large such as used for cryptographies, preparing a primitive
polynomial is not always easy. Let us consider the case that
p is a large prime number and m = 2. In this case, consider
all prime factors pi of p2 − 1 as

p2 − 1 =
∏

i

pei
i , (8)

then check the following relation for every pi.

f (x) ∤ x(p2−1)/pi − 1, (9)

where f (x) is a randomly generated irreducible polynomial
of degree 2 over Fp.

On the other hand, generating an irreducible polynomial
of an arbitrary degree over Fp is not difficult [4]. Particu-
larly, when every factor of the degree m divides p − 1, it
becomes quite easy. When m = 2 as an example, using
c ∈ Fp such that

(
c/p

)
= −1,

f (x) = x2 − c (10)

becomes an irreducible polynomial over Fp. Thus, it is
more practical that the same binary sequence is generated
by using some non-primitive irreducible polynomial.

3.2. Example

Let us observe a small example with p = 7 and m = 2.
Table 1 shows the result. As introduced in the previous
section, irreducible binomials such as x2 − 3, x2 − 5, and
x2 − 6 are obtained. Applying a simple substitution such as
x← x+1, irreducible trinomials such as x2 + 2x + 5 are ob-
tained. Among them, there are primitive or non-primitive
irreducible polynomials as shown in Table 1.

See the row (1) of the table. In this case, x2 + 2x + 5,
x2 + 4x+ 6, and x2 + x+ 3 are transformed from x2 − 2 and
generate the same binary sequence 0100001110110100.
Among these three irreducible polynomials, x2+2x+5 and
x2+x+3 are primitive polynomials of order e = 72−1 = 48.
On the other hand, x2+4x+6 is a non-primitive polynomial
of order 16, however it generates the same binary sequence.
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Table 1: Binary sequence generated by primitive polynomial and irreducible polynomial with p = 7 and m = 2

x2 − 3 x2 − 5 x2 − 6 binary sequence T
(1) x← x + 1 x2 + 2x + 5 x← x + 2 x2 + 4x + 6(∗) x← x + 4 x2 + x + 3 0100001110110100
(2) x← x + 6 x2 + 5x + 5 x← x + 5 x2 + 3x + 6(∗) x← x + 3 x2 + 6x + 3 0001011011100001
(3) x← x + 3 x2 + 6x + 6(∗) x← x + 6 x2 + 5x + 3 x← x + 5 x2 + 3x + 5 0010000011010111
(4) x← x + 4 x2 + x + 6(∗) x← x + 1 x2 + 2x + 3 x← x + 2 x2 + 4x + 5 0111010110000010
(∗) They are non-primitive irreducible polynomials over F7. The others are all primitive polynomials.

3.3. Consideration

Since Table 1 is a small example, the primitivity of ir-
reducible polynomial could be easily checked. However,
when the characteristic p is large, the primitivity check is
not always easy. According to Table 1, it is found that an ir-
reducible polynomial of order 16 generates the same binary
sequence generated by a certain primitive polynomial. In
detail, it has been found that the non-primitive irreducible
polynomials marked with (∗) in Table 1 have the same order
16. The authors have tested a lot of prime numbers as the
characteristic p with extension degree m = 2. According to
the results, without any counter examples, the orders of the
non-primitive polynomials have been given by (p2 − 1)/s
and s is an odd prime factor of p2 − 1.

4. Conclusion and future works

This paper has shown that, when the degree is restricted
to 2, some non-primitive irreducible polynomials are able
to generate the same binary sequence generated by a cer-
tain primitive polynomial. It means that, if the condition
for the non-primitive irreducible polynomials are shown
clearly, primitive polynomials are not necessary for gen-
erating maximal length sequence. As a future work, the
condition should be theoretically shown.
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