
ReLU Functions using Finite State Machines for
Stochastic Computing

Kanta Yoshioka∗, Ichiro Kawashima†‡ and Hakaru Tamukoh†‡
∗School of Engineering, Kyushu Institute of Technology, Japan

†Gaduate Shool of Life Science and System Engineering, Kyushu Institute of Technology, Japan
‡Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Japan

Abstract—This study presents novel ReLU functions-based on
stochastic computing (SC-based ReLU). The conventional SC-
based ReLU for an addition method using approximate parallel
counter (APC), which outputs the sum of multiple inputs every
clock cycle works as a ReLU using accumulator. However, this
conventional method loses the high fault tolerance, which is
one of the advantages of stochastic computing (SC). Therefore,
we propose an SC-based ReLU using a finite state machine
(FSM) instead of an accumulator for an addition method using a
multiplexer (MUX) which determines the outputs stochastically.
For example, if an error occurs in the value of the accumulator in
the conventional method, all subsequent operations will be wrong.
However, in the case of the proposed SC-based ReLU using
FSM, even if an error occurs in the current state of the FSM, it
quickly returns the correct state of the FSM. Thus, the proposed
SC-based ReLU using FSM for MUX is more fault tolerant
than the conventional SC-based ReLU using the accumulator.
However, the accuracy of the addition methods using MUX is
poor because the output is determined stochastically, and a large
length of bitstream (BSL) is required for accurate calculation. As
the BSL becomes larger, the latency for the calculation increases,
decreasing the performance. Therefore, we propose a SC-based
ReLU using FSM for APC. The addition method using APC
doesn’t require BSL as large as the addition method using
MUX to obtain correct calculation results. Compared with the
conventional SC-based ReLU using an accumulator for APC, the
proposed SC-based ReLU using FSM for APC shows sufficient
accuracy even with a small BSL. The proposed SC-based ReLU
using FSM has also a high fault tolerance, unlike the conventional
SC-based ReLU using an accumulator.

I. INTRODUCTION

Machine learning technology has brought benefits to many
aspects of modern society, such as web search, image recog-
nition and automatic translation [1]. As the societal demands
increase, higher accuracy and faster computational speed are
required, and the layers of the neural network (NN) are getting
deeper. However, with the end of Moore’s Law, the computing
performances of central processing units (CPUs) and graphics
process units (GPUs) has reached a ceiling, and the power
consumption of GPUs has also become a serious problem in
large-scale data centers. Field programable gate arrays (FP-
GAs) have received attention recently. By optimizing circuits
to our problem, FPGAs are expected to increase the calculation
speed and consume less power than GPUs [2], [3]. However,
they also have the disadvantage that they are not suitable
for complex operations. Stochastic computing (SC) [4], [5],
which can realize arithmetic operations by bit operation, is also
receiving attention. SC is a method of performing arithmetic

operations based on probabilistic information, and is known
to be more area-efficient in hardware implementations and
easier to implement in large-scale arithmetic circuits than other
general arithmetic methods. The main focus of SC research
is the efficient implementation of NNs in FPGA without
losing accuracy. This includes the efficient implementation
of activation functions and arithmetic units to operate with
a shorter bitstream length (BSL) and more accuracy.

One of the most common activation functions today is
ReLU. One of the reasons why ReLU is widely used is
the ease of achiving high accuracy. ReLU is less prone to
gradient vanishing than conventional activation functions such
as the sigmoid and hyperbolic tangent, which makes it easier
to build up layers and improves performance. Therefore,
it is necessary to develop and implement ReLU functions
based on stochastic computing (SC-based ReLU) in FPGAs.
However, the conventional SC-based ReLU [6] requires an
accumulator for each neuron, which causes a heavy circuit
resource consumption [7]. Because the number of neurons
in the latest NNs can be several thousand or more, the
implementation using conventional methods may run out
of hardware resources. Additionally, conventional SC-based
ReLU changes the bitstream which is a series of ’1’ or ’0’
to represent the numerical value in SC to a binary number to
perform operations, which undermines the advantage of the
SC’s superior fault tolerance [7]. Therefore, conventional SC-
based ReLU has some disadvantages.

In this study, we propose novel SC-based ReLUs, which do
not have the disadvantages described above. The first proposed
SC-based ReLU with FSM is for the addition method using
a multiplexer (MUX), which determines the output stochas-
tically. If an error occurs in the value in the accumulator,
all subsequent output will be wrong, but if an FSM is used,
the correct value will be output quickly. Therefore, using the
FSM does not lose the fault tolerance, which is one of the
advantages of the SC. However, this addition method using
the MUX requires large BSL to calculate correctly, so it is not
practical. Therefore, we propose SC-based ReLU using FSM
for the addition method using an approximate parallel counter
(APC) which does not require large BSL to calculate correctly.
This is the second proposed SC-based ReLU with FSM.
From comparison with the conventional SC-based ReLU [6],
we achieved sufficient accuracy in calculation. Additionally,
unlike the conventional SC-based ReLU for APC, the proposed

RS1-5 2021 International Workshop on Smart Info-Media Systems in Asia (SISA 2021), Sep. 20–22, 2021

Copyright © 2021 IEICE. Permission request for reproduction: Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/. 40



SC-based ReLU uses FSM instead of an accumulator has high
fault tolerance.

II. STOCHASTIC COMPUTING

SC is a method that performs arithmetic operations based
on probability information, and is known to be easier to im-
plement area-efficient hardware than general binary arithmetic
methods. For example, by using SC, we can substitute a
single gate for a multiplier, which consumes a lot of hardware
resources in general binary arithmetic methods.

In the domain of SC, binary numbers or values are treated
as Bernoulli sequences, which are probabilities represented by
random bitstreams of ’0’ and ’1’ [4] [8] . A numerical value
is represented by the probability Px(0 ≤ Px ≤ 1) of the
existence of ’1’ in BSL. There are two ways to represent nu-
merical values in the SC domain: unipolar and bipolar, each of
which has a different definition to represent numerical values.
In the unipolar domain, the number X = Px(0 ≤ X ≤ 1)
, which means that we can handle only positive numbers.
Conversely, in the bipolar domain, the number X = 2Px− 1
and −1 ≤ X ≤ 1, which means that we can handle positive
and negative numbers. The order of ’0’ and ’1’ in the bitstream
has no meaning. For example, if BSL is 5, (00011), (01010)
and (01001) represent the same numerical value.

In SC, basic operations such as addition, subtraction, mul-
tiplication, and division can be implemented with a single
gate array, which has a great advantage in reducing hardware
resources. First, the two-input multiplier in unipolar is imple-
mented with a single two-input AND element. The probability
Pc of the output C is expressed in (1) using the probabilities
Pa and Pb of the inputs A and B to the AND element.

Pc = Pa · Pb (1)

In unipolar, the probability corresponds directly to the numer-
ical value, so C = A · B can be implemented with a single
AND element. In this case, because the calculation result may
differ depending on the position of the ’1’, there is almost
always an error with the theoretical value, but the error can
be reduced by increasing the BSL. However, there is a trade-
off between the performance of the hardware such as latency
and the accuracy of the calculation. A large BSL is needed
to achieve high accuracy and the hardware performance will
decrease.

The two-input multiplier in bipolar is implemented by a
single two-input EXNOR element. Similarly, using the proba-
bilities Pa and Pb of inputs A and B to the EXNOR element
and the probability Pc of output C, (2) can be defined.

Pc = (1− Pa) · (1− Pb) + Pa · Pb (2)

In this case, the output C is expanded as follows (3), thus
C = A ·B is obtained.

C = 2 · Pc− 1

= 2 · (A ·B + 1

2
)− 1

= A ·B

(3)

Therefore, in both unipolar and bipolar, the multiplier can be
realized with a single logic gate, resulting in a significant area
reduction effect.

There are two main types of adders that can be used in both
unipolar and bipolar. First, the addition method is based on the
MUX [8], in which the probability Pc of the output C of is
defined as (4).

Pc = Ps · Pa+ (1− Ps) · Pb (4)

Pa and Pb are the probabilities of inputs A and B of the
MUX and Ps is the probability of the selection signal of the
MUX. The probability of the selection signal Ps is set to 0.5,
i.e., the signal outputs ’1’ with a probability of 50% and ’0’
with a probability of 50%. As a result, (4) becomes (5).

Pc = 0.5 · (Pa+ Pb) (5)

It is possible to weigh and add by changing Ps, but the output
will always be scaled. This has a serious disadvantage that as
the number of inputs to the adder increases, the accuracy of
the calculation decreases significantly.

The second addition method is based on the approximate
parallel counter (APC) [9]. This addition method based on
APC does not use a stochastic bitstream but a binary number
to perform the addition. The APC outputs the sum of multiple
inputs every clock cycle, resulting in a log2 n bit width
binary bitstream. While a single bit output can only represent
numbers in the range of [-1,1], the APC can represent a wide
range of numbers and reduce the amount of information that
is removed by each addition. This addition method based on
APC solves the scaling problem of the MUX described above,
making it possible to obtain highly accurate calculation results
even with a small number of BSL. However, it also has the
disadvantage of a larger circuit size compared to a MUX [10].

In addition to the basic operations described above, SC can
also realize nonlinear operations using FSM. Fig. 1 shows
the stochastic hyperbolic tangent function [8], which is an SC
approximation of the hyperbolic tangent function. The input
X is represented by the SC bitstream x(t) and the state Si

of the FSM transition according to x(t) to determine output
y(t). When x(t) = 1, the state moves one to the right, so
Si = Si+ 1. When x(t) = 0, the state moves one to left,
so Si = Si− 1. The output bit y(t) is determined by the
number of states Si. If Si is smaller than half of the number
of states, y(t) = 0, otherwise y(t) = 1. The output bitstream y
after repeating the state transitions many times is approximated
by the hyperbolic tangent function. Other exponential [8] and
absolute value functions [11], as shown Fig. 2 and Fig. 3 can
also be realized with FSM. The state Si in both the FSM for
the exponential and absolute functions moves like FSM for
hyperbolic FSM in Fig. 1. N is the number of states in FSM.
In Fig. 2, G is a parameter that changes the gradient of the
exponential function. If Si is smaller than N−G−1, y(t) = 0,
otherwise y(t) = 1. The output bitstream is approximated by
the exponential function [8].

In Fig. 3, if Si is smaller than half of the number of states
and i is an odd number, y(t) = 0, otherwise y(t) = 1.

RS1-5 2021 International Workshop on Smart Info-Media Systems in Asia (SISA 2021), Sep. 20–22, 2021

41



If Si is bigger than half of the number of states and i is
an odd number, y(t) = 1, otherwise y(t) = 0. The output
bitstream is approximated by the absolute function [11]. These
functions implemented by FSMs are highly fault-tolerant. For
example, even if an error occurs in the current state number
Si of the FSM, it will quickly return to the correct Si because
the number of FSM states is small in comparison with BSL.
Therefore, it will output the correct bit with few incorrect
outputs.

Such functions are difficult to realize in ordinary binary
numbers in hardware, and the scale of the circuit becomes
large. However, in SC, we can easily implement this function
in hardware with FSM.

ReLU has also been proposed in SC and is shown in
Fig. 4 [6]. In Fig. 4, l represents the bit width of the state
number of the up down counter, which is implemented with
the FSM shown in Fig. 1. The conventional SC-based ReLU
is compatible with the APC-based addition method and can
achieve high calculation accuracy even when the BSL is
relatively small. However, it also has some disadvantages.
Firstly, it requires modules that convert bitstream to a binary
number, which eliminates the advantages of SC in terms of
circuit simplicity and faults tolerance [7]. For example, the
accumulator in Fig. 4 is used to accumulate values input from
the APC every clock cycle and make positive and negative
decisions. However, if an error occurs in the accumulator, all
subsequent operations will be wrong. Thus, the conventional
SC-based ReLU eliminates the advantage of SC.

Secondly, it consumes a lot of hardware resources. The
conventional SC-based ReLU shown in Fig. 4 is installed
for each neuron, which requires an accumulator and an FSM
for the output decision, respectively. Recently, deep neural
networks are becoming increasingly large, and the number of
neurons can be thousands or tens of thousands. Therefore,
it is very difficult to implement such conventional SC-based
ReLU in hardware. Conventional SC-based ReLU has these
disadvantages. However, using an accumulator has the advan-
tage of excellent reconfigurability, as it can approximate any
function by freely reconfiguring the subsequent circuits [10].

Fig. 1: Conventional hyperbolic tangent function

Fig. 2: Conventional exponential function

Fig. 3: Conventional absolute function

Fig. 4: Conventional SC-based ReLU function

III. PROPOSED METHODS

There are two proposed methods of addition in the domain
of SC: one using MUX and the other using APC. In this
section, we introduce novel SC-based ReLUs with FSM for
both the MUX-based and the APC-based addition methods.

A. ReLU Function for MUX

We introduce a novel SC-based ReLU with FSM for the
MUX-based addition method. The proposed method is an FSM
as shown in Fig. 5. This FSM is a combination of two FSMs.
The first FSM clips a negative number to 0. In bipolar, the
number of ’0’ and the number of ’1’ are equal when the
value becomes 0. Therefore, the first FSM outputs ’0’ and ’1’
alternately. This FSM builds the lower half of the proposed
SC-based ReLU for the MUX in Fig. 5. The second FSM
outputs the input bit as it is, to represent the positive number.
This FSM builds the upper half of the proposed SC-based
ReLU for MUX in Fig. 5.

We explain the SC-based ReLU for MUX in detail in (6) and
(7). x is the input binary number and Px is x’s probability of
’1’. y is the output binary number and Py is y’s probability of
’1’. We assume an FSM which has N states, so Smax = N−1,
Shalf = (N/2) + 1. We define S as the current state.

When : 0 ≤ S ≤ Shalf

oData =

{
0 (even)

1 (odd)
(6)

When : Shalf + 1 ≤ S ≤ Smax

oData = iData (7)

When Px ≤ 0.5, i.e., a negative number, enters the
proposed SC-based ReLU, the number of ’0’ in the input
bitstream becomes larger than ’1’, and thus 0 ≤ S ≤ Shalf

is approximated in (6). In this case, as shown in Fig. 5, when
the input is ’0’ or ’1’ at S = 0, the transition is to S = 1.
This means that the probability of outputting ’1’ and that of

RS1-5 2021 International Workshop on Smart Info-Media Systems in Asia (SISA 2021), Sep. 20–22, 2021

42



outputting ’0’ are equal when 0 ≤ S ≤ Shalf , and Py = 0.5.
This means that y = 2 ·Py− 1 = 0 and negative numbers are
clipped to 0.

When 0.5 ≤ Px, i.e., a positive number, enters the proposed
SC-based ReLU, the number of ’1’ in the input bitstream is
larger than the number of ’0’, and thus Shalf+1 ≤ S ≤ Smax

is approximated. In this case, as shown in (7), the input data
is output as it is, so Px = Py. From this, y = x. From the
above, the proposed FSM works as a ReLU function.

Fig. 5: Proposed SC-based ReLU Function for MUX

B. ReLU Function for APC

We introduce a novel SC-based ReLU with FSM for the
APC-based addition method. The proposed SC-based ReLU
for APC consists of two-stage FSMs as shown in Fig. 6.
The second-stage FSM is proposed SC-based ReLU for MUX
introduced in the former section.

Next, we discuss the first-stage FSM. If the number of signal
lines input to the APC is n, the output bit width of the APC is
log2 n. By making the output multi-bits, the APC can achieve
high accuracy even with a small BSL. However, the output
from APC is a binary number not a series of ’0’ or ’1’ in SC,
which makes it difficult to calculate. The input of the proposed
SC-based ReLU for MUX is a single bit, thus we have to
convert the binary number, which is the output of APC, into a
single bit in SC. The first-stage FSM works like an adapter to
convert the binary number into a single bit without removing
any information at this time. Ideally, we are considering of
an FSM that works as a pure line function [12]. We are
currently using the hyperbolic tangent for APC introduced in
[13]. In this FSM which works as a hyperbolic tangent for
APC, the number of state transitions V is calculated as (8)
with Count(t) which is the input binary number from APC.
Then, the current state S moves V to next state S′ like (9).

V = Count(t) · 2− n (8)

S′ = S + V (9)

IV. EXPERIMENTAL RESULTS

We verified the proposed SC-based ReLU using FSM for
MUX and APC in software. First, we experimented with the
numerical simulation of the proposed SC-based ReLU using
defferent BSL. We generated 128 numbers for each experiment
to test the SC-based ReLU accuracy. These 128 numbers were
created by dividing the probability [0,1] of a single bit in
the bitstream, becoming ’1’ by 128. In other words, if the
probability of a single bit being ’1’ is 1, it represents 1,
and if the probability of a single bit being ’1’ is 1/2, it

Fig. 6: Proposed SC-based ReLU Function for APC

represents 0 in bipolar. We calculated root mean square error
(RMSE) between ReLU and SC-based ReLU for MUX to
see how well the proposed SC-based ReLU and ReLU are
fitted. Secondly, we experimented with the variation of the
accuracy of the proposed SC-based ReLU with BSL to see
how the RMSE changes with the BSL change. Thirdly, we
randomly generated 1000 numbers for each experiment to
test the proposed SC-based ReLU accuracy. We calculated the
average inaccuracy (the difference between the ReLU and the
proposed SC-based ReLU) of using 128 and 1024 BSL to
compare with conventional SC-based ReLU [6]. Finally, we
experimented with the inference for the Iris dataset using the
proposed SC-based ReLU. The Iris dataset has 150 data that
distinguish between three types of iris-based on data such as
the length of the four petals of the iris. We separated the 150
iris data into 80% (i.e. 120) for training and 20% (i.e. 30) for
testing. The network configuration was 4-4-2-3, thus, this NN
has two hidden layers. The test accuracy on a single precision
floating point was 93.33%. In addition, we experimented about
fault torelance. The error was simulated by randomly updating
the state of the FSM working as ReLU every 100 BSL. This
means that when BSL is 5000, a sum of 50 errors are occured.
Then, we experimented the inference for the iris dataset when
the error was included.

The results of the first experiment, comparing ReLU and
proposed SC-based ReLU, are shown in Fig. 7 and Fig. 8. Fig.
7 shows the result of SC-based ReLU for MUX and Px(0 ≤
Px ≤ 1) indicates the probability that the input to SC-based
ReLU, which is shown in Fig. 5, is ’1’. When the BSL was
256 and 1024, RMSE was 0.03336 and 0.01491 respectively.
Fig. 8 shows the result of SC-based ReLU for APC. In this
case, the number of bitstreams input to the APC is set to four.
This number matches the number of neurons in NN for the
inference Iris later. Px(0 ≤ Px ≤ 1) in Fig. 8 shows that the
probability that input to APC is ”1” and we set same Px to
four inputs of APC. For example, Px = 1 means that the APC
approximately always outputs 4; Px = 1/2 means that the
APC approximately always outputs 2. When the BSL was 256
and 1024, the RMSE was 0.19141 and 0.18711 respectively.

The results of the second experiment, observing the change
of RMSE, are shown in Fig. 9. As the BSL is increased,
the RMSE of SC-based ReLU for MUX is decreased but the
RMSE of SC-based ReLU for APC is not decreased.

RS1-5 2021 International Workshop on Smart Info-Media Systems in Asia (SISA 2021), Sep. 20–22, 2021

43



The results of the third experiment, comparing inaccuracy of
conventional and proposed SC-based ReLU, are listed in Table
I. We used the same test method in [6] to test the proposed
SC-based ReLU for APC; however, we did not use the same
test method to test the proposed SC-based ReLU for MUX.
The proposed SC-based ReLU is for the MUX, whereas the
conventional one is for the APC. Therefore, in this test, we did
not calculate addition using the MUX, and input to a series of
’0’ or ’1’, which is made from the generated random numbers
by the binarization method in SC, to the FSM directly. For this
reason, the verification method is different from the method
used in [6]. We obtained a small average inaccuracy in the
SC-based ReLU for both MUX and APC.

The results of the fourth experiment, the inference of the
Iris dataset, are shown in Fig. 10. Note that the horizonal axis,
BSL, is a logarithmic axis in Fig. 10. When the BSL is small,
the accuracy is low, but as it increases, the accuracy increases
for the proposed SC-based ReLU for MUX. It cannot be
calculated correctly when BSL is small, because the addition
using the MUX is always scaled, From these characteristics,
it can be inferred that the low accuracy when the BSL is
small is caused by the MUX, and the proposed SC-based
ReLU for MUX is working correctly. While the inference
was calculated by APC and the proposed SC-based ReLU for
APC, we achieved a higher accuracy than using the MUX even
though the BSL was small. However, the SC-based ReLU for
APC does not fit well into the ReLU, and the RMSE is large
in Fig. 8 and Fig. 9. Therefore, the maximum accuracy of the
SC-based ReLU for APC is 86.67%, which is not as high as
the 93.33% calculated on a single precision floating point.

The results of the fourth experiment, the inference of the
Iris dataset including errors, are also shown in Fig. 10. In the
case of the MUX, the maximum accuracy including simulated
errors was 93.33%, the same as the case without error. On
the other hand, in the case of the APC, there was a slight
decrease in accuracy, with the maximum accuracy decreasing
by about 3.33 points from 86.67% to 83.33%. However, in this
case, the number of test data was only 30. In other words, just
one wrong data would cause the decrease in accuracy by 3.3
points. From this, it can be said that there is almost no change
in accuracy. From these results, it is found that both of the
proposed SC-based ReLUs have high fault tolerance.

(a) BSL is 256 (b) BSL is 1024

Fig. 7: Propsoed SC-based ReLU for MUX

(a) BSL is 256 (b) BSL is 1024

Fig. 8: Propsoed SC-based ReLU for APC

Fig. 9: Change in RMSE when BSL is increased

V. DISCUSSION

First, we discuss the accuracy of the proposed SC-based
ReLU. We discuss about the proposed SC-based ReLU for
MUX. The proposed SC-based ReLU with FSM has a high
fault tolerance, which is one of the advantages of SC that
conventional SC-based ReLU with accumulator loss. Fig. 7
shows that as the BSL increases, the RMSE decreases, and
accuracy increases. In general, [256,1024] BSL are used for

TABLE I: Average Inaccuracy (lower is better) Comparison
between Conventional and Proposed

BSL=128 BSL=1024
Conventional 0.057 0.031
Proposed for MUX 0.007 0.003
Proposed for APC 0.026 0.045

Fig. 10: Change in Iris test accuracy when BSL is increased

RS1-5 2021 International Workshop on Smart Info-Media Systems in Asia (SISA 2021), Sep. 20–22, 2021

44



SC operations. When the BSL was 256, RMSE was 0.03336.
When the BSL was 1024, RMSE was 0.01491. Therefore,
it can be inferred that enough accuracy is obtained for SC
operations. Table I also shows that the accuracy of SC-based
ReLU for MUX is sufficient when compared to the conven-
tional method. However, the decrease in accuracy owing to
the MUX is not taken into account, because a series of ”0”
or ”1” is directly input to the proposed SC-based ReLU using
FSM. Futermore, Fig. 10 shows that the accuracy increases
as the BSL increase, compared to the low accuracy when
the BSL is small. As mentioned in Section II, information
is significantly reduced in the case of addition using MUX,
BSL should be increased to obtain correct calculation results.
From the characteristics of this MUX-based addition method,
it can be inferred that the proposed SC-based ReLU for MUX
works correctly. However, it is not realistic to perform 300,000
operations for the Iris 3-class classification.

Therefore, we consider the proposed SC-based ReLU for
APC which is an accurate addition method even when the
BSL is small. We substitute the hyperbolic tangent for APC
[13] as the first-stage FSM, which functions as an adaptor in
Fig. 6. Therefore, the approximate shape of the graph is shown
in Fig. 9. The negative part is properly clipped to zero, but
the positive part shows the positive form of the hyperbolic
tangent. Additionally, Fig. 9 shows that the RMSE did not
decrease when the BSL was increased and it ranged between
approximately 0.185 and 0.190. Table I also shows a slightly
lower accuracy than the conventional method. However, Fig.
10 shows the result of the Iris inference for the addition
method using APC, which has improved the disadvantages
of the addition method using MUX. From the results in Fig.
10, it can be observed that higher accuracy is obtained with a
smaller BSL than when MUX is used for addition. However,
there is a difference with 93.33% accuracy when inferring
with a single-precision floating point. We think that large
RMSE of the proposed SC-based ReLU for APC is one of the
most important reasons for this difference in accuracy between
inferring with single-precision floating point and without it.
We substituted the hyperbolic tangent for APC [13] as the
first-stage FSM in the proposed SC-based ReLU for APC.
From Fig. 8 and Fig. 9, the graph of the proposed SC-based
ReLU for APC is very different from that of the correct ReLU,
thus the inferring accuracy is decreased. The accuracy may
deteriorate further depending on the weight data for inference.

Next, we discuss the hardware resources. We compare the
hardware resources in the proposed SC-based ReLU using
FSM for APC with the conventional SC-based ReLU using
an accumulator for APC. In the conventional SC-based ReLU
shown in Fig. 4, there are two large resource elements, the
accumulator and the up down counter. The accumulator needs
to be large depending on the number of inputs to the APC n
and BSL, and the up down counter is realized with the FSM as
in [13]. When comparing this to the proposed SC-based ReLU,
the proposed SC-based ReLU for APC is expected to reduce
hardware resources by the difference between the accumulator
and the proposed FSM. The reduction of hardware resources

in a neuron is small, but as the number of neurons increases,
the overall reduction becomes significant.

VI. CONCLUSION

In this study, we proposed SC-based ReLUs using the FSM
for MUX and APC. In the proposed method, we implemented
the SC-based ReLU using the FSM unlike the conventional
SC-based ReLU using the accumulator [6]. The proposed SC-
based ReLU using FSM is more fault-tolerant than the con-
ventional SC-based ReLU using the accumulator. Additionally,
the hardware resources are expect to be reduced. In the case
of addition using MUX, the loss of accuracy is so severe that
it is impractical, but in the case of addition using APC, high
accuracy was obtained even with a small BSL. However it did
not reach the accuracy on a single precision floating point.
The proposed SC-based ReLU for APC has a large RMSE and
does not have a good fit to ReLU. In the future, the proposed
SC-based ReLU for APC can be further improved in terms of
accuracy.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. ”Deep learning”.
nature, 521(7553):436–444, 2015.

[2] Shuichi Asano, Tsutomu Maruyama, and Yoshiki Yamaguchi. ”Per-
formance comparison of FPGA, GPU and CPU in image processing”.
In 2009 international conference on field programmable logic and
applications, pages 126–131. IEEE, 2009.

[3] Yuexuan Tu, Saad Sadiq, Yudong Tao, Mei-Ling Shyu, and Shu-Ching
Chen. ”A power efficient neural network implementation on hetero-
geneous FPGA and GPU devices”. In 2019 IEEE 20th International
Conference on Information Reuse and Integration for Data Science (IRI),
pages 193–199. IEEE, 2019.

[4] Brian R Gaines. ”Stochastic computing systems”. In Advances in
information systems science, pages 37–172. Springer, 1969.

[5] Paishun Ting and John P Hayes. ”On the role of sequential circuits in
stochastic computing”. In Proceedings of the on Great Lakes Symposium
on VLSI 2017, pages 475–478, 2017.

[6] Zhe Li, Ji Li, Ao Ren, Ruizhe Cai, Caiwen Ding, Xuehai Qian, Jeffrey
Draper, Bo Yuan, Jian Tang, Qinru Qiu, et al. ”HEIF: Highly efficient
stochastic computing-based inference framework for deep neural net-
works”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 38(8):1543–1556, 2018.

[7] Yawen Zhang, Runsheng Wang, Yixuan Hu, Weikang Qian, Yanzhi
Wang, Yuan Wang, and Ru Huang. ”Accurate and Energy-Efficient
Implementation of Non-Linear Adder in Parallel Stochastic Computing
using Sorting Network”. In 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2020.

[8] Bradley D Brown and Howard C Card. ”Stochastic neural computa-
tion. I. Computational elements”. IEEE Transactions on computers,
50(9):891–905, 2001.

[9] Kyounghoon Kim, Jongeun Lee, and Kiyoung Choi. ”Approximate de-
randomizer for stochastic circuits”. In 2015 International SoC Design
Conference (ISOCC), pages 123–124. IEEE, 2015.

[10] Yidong Liu, Siting Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han.
”A Survey of Stochastic Computing Neural Networks for Machine
Learning Applications”. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[11] Peng Li, David J Lilja, Weikang Qian, Marc D Riedel, and Kia Bazargan.
Logical computation on stochastic bit streams with linear finite-state
machines. IEEE Transactions on Computers, 63(6):1474–1486, 2012.

[12] Yidong Liu, Yanzhi Wang, Fabrizio Lombardi, and Jie Han. An energy-
efficient stochastic computational deep belief network. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1175–1178. IEEE, 2018.

[13] Kyounghoon Kim, Jungki Kim, Joonsang Yu, Jungwoo Seo, Jongeun
Lee, and Kiyoung Choi. ”Dynamic energy-accuracy trade-off using
stochastic computing in deep neural networks”. In Proceedings of the
53rd Annual Design Automation Conference, pages 1–6, 2016.

RS1-5 2021 International Workshop on Smart Info-Media Systems in Asia (SISA 2021), Sep. 20–22, 2021

45


