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Abstract—Transmission rate control in wireless LANs is one of
the factors that affect communication quality. Many transmission
rate control algorithms have been proposed in previous studies.
However, there are cases where existing algorithms cannot
adaptively control the rate due to the dynamics of wireless
communication. In this paper, we propose a transmission rate
control method based on Deep Q-Network (DQN), in which
a DQN agent learns information about the communication
environment and adaptively controls the transmission rate in
response to the communication environment. We evaluate the
proposed DQN-based transmission rate control by using the ns3-
ai framework and the ns-3 network simulator. Simulations show
that the proposed method improves throughput by up to 95%
compared to the Minstrel existing method.

I. INTRODUCTION

Currently, many electronic devices, such as smartphones,

tablets, home appliances, and drones communicate wirelessly.

It is expected that everything will be connected to wireless in

the future [1]. The IEEE 802.11 standard network called Wi-

Fi is still one of the most common wireless networks, with

more than 900 million units in use [2]. In addition, with new

broadband services offered, such as 4K/8K video streaming

and XR (Extended Reality) technology, Wi-Fi requires high

throughput and low latency. Wi-Fi networks have difficult

channel predictability due to wireless medium sharing, node

mobility, channel fading, and interference [4]. These channel

dynamics degrade the wireless communication quality.

The transmission rate is a network parameter that deter-

mines how fast a node transmits data to the wireless medium.

In a good communication environment (e.g., short distance and

no interference), a higher transmission rate results in higher

goodput and shorter channel occupancy time. On the other

hand, in a poor communication environment, such as a dense

environment, selecting a high transmission rate increases the

probability of packet loss and degrades communication quality.

Therefore, appropriate transmission rate control is necessary to

provide communications that stably satisfy high transmission

rate requirements.

Adaptive control of the transmission rate is necessary to

maximize throughput under real-world conditions. Throughput

can be maximized by selecting the transmission rate according

to changes in the communication environment. Many transmis-

sion rate control algorithms have been proposed in previous

studies [8][9][10]. However, these existing algorithms some-

times fail to cope with dynamic changes in the communication

Fig. 1. ns3-ai overview illustration

environment. Therefore, in a previous study, a method using

Q-learning was proposed to control the transmission rate by

adapting to dynamic communication environments [5]. The

results in [5] show that the transmission rate control by Q-

learning is superior to Minstrel, an existing method. In [5],

transmission rate control using Deep Q-network, which can

perform more complex processing, is introduced as a future

study.

We propose an adaptive transmission rate control method

for wireless LANs(WLAN) using Deep Q-network (DQN)

in dynamic environments where terminals are moving. We

developed a model for adaptive transmission rate control using

DQN and conducted simulation evaluations. The simulations

were conducted using ns3-ai, a platform that combines the

network simulator ns-3 with AI processing in Python[6]. The

reinforcement learning agent can learn from the simulated

network through observations and rewards, and the actions

chosen by the agent for the following time steps can be applied

to the simulated network, as illustrated in Fig.1.

The contributions of this research are as follows:

• We design a novel reinforcement learning agent with

DQN for adaptive WLAN transmission rate control. The

agent controls the data rate by changing the MCS.

• We show how the reinforcement learning agent with DQN

works using ns3-ai. We also compare the results with

Minstrel, an existing transmission rate control method

that is well-known in general.

This paper is organized as follows. In Section 2, we describe

the WLAN transmission rate and evaluate the performance of

existing methods by simulation. The proposed transmission

rate control method using DQN is described in Section 3. In

Section 4, we evaluate the proposed method by simulation.

Section 5 concludes the paper.

SS1-6 2022 International Workshop on Smart Info-Media Systems in Asia (SISA 2022), Sep. 15–16, 2022

Copyright © 2021 IEICE. Permission request for reproduction: Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/. 27



II. RATE CONTROL IN WIRELESS LAN

IEEE 802.11 has a transmission rate index called the Modu-

lation and Coding Scheme (MCS). In the IEEE 802.11 WLAN

standards, different MCS can be selected for every data packet.

Table I shows the IEEE 802.11ac MCS and the corresponding

physical data rates of each MCS, with a bandwidth of 20MHz

and the number of spatial streams of 1. A specific Signal to

Interference plus Noise Ratio (SINR) is required for correct

signal reception at each MCS: the higher the MCS, the higher

the required SINR, and conversely, the lower the required

SINR at the lower MCS. MCS selection, which will be

referred to as rate control in this paper, plays an important

role to improve the quality of communication. However, its

implementation is outside the scope of the standard. Many

rate control algorithms have been proposed in [8][9][10]. The

most popular algorithm is Minstrel and its extension Minstrel-

HT [11], which are already implemented in operating systems

such as Linux.

Minstrel selects an MCS based on a sampling process.

Minstrel collects statistics on transmission attempts for each

MCS. The actual throughput is evaluated as the probability of

successful transmission multiplied by the packet payload and

divided by the packet transmission time. Before sending a new

frame, Minstrel determines the following sequence:

1) the MCS with the highest throughput

2) the MCS with the second-highest throughput

3) the MCS with the highest probability of successful

transmission

4) the lowest MCS

The maximum number of consecutive transmission attempts

for each of these MCS is also defined. This is to limit the

duration of the attempts. In addition, by default, the algorithm

operates in ”look-around” mode with a 10% and tries a random

MCS. This replaces the MCS with the highest throughput or

the second-highest throughput.

We performed a performance evaluation simulation of Min-

strel in ns-3. The parameters of the simulation are shown in

Table II. In the log-distance path loss model, the propagation

loss PL at a certain distance d is expressed as

PL = L0 + 10n log10
d

dref
(1)

where the propagation losses (L0 and propagation loss at the

reference distance PL) are in dBm, n is the path loss exponent,

and the distances (the reference distance dref and d) are in

meter. L0 should not be dB, but dBm, because it is the power

loss.

In this paper, we assume that L0 = 50dBm, n = 3.5,

dref = 1m. To further simplify the simulation, we also assume

a full buffer DL traffic model with packets always ready to

be transmitted. The number of episodes per simulation is the

interval at which the throughput is measured and is adjusted

to a value that makes it easy to understand the performance.

We consider the following simulation scenario: two terminals,

each acting as a transmitter and a receiver, respectively,

TABLE I
MODULATION AND CODING SCHEME IN IEEE 802.11AC

MCS Index
Spatial
streams

Modulation Coding
Data rate[Mbps]

20MHz
0.8μs GI 0.4μs GI

0 1 BPSK 1/2 6.5 7.2
1 1 QPSK 1/2 13 14.4
2 1 QPSK 3/4 19.5 21.7
3 1 16-QAM 1/2 26 28.9
4 1 16-QAM 3/4 39 43.3
5 1 64-QAM 2/3 52 57.8
6 1 64-QAM 3/4 58.5 65
7 1 64-QAM 5/6 65 72.2
8 1 256-QAM 3/4 78 86.7

TABLE II
SIMULATION PARAMETERS

Standard IEEE 802.11ac
Propagation Model Log-distance propagation
Noise Floor -94dBm
RTS/CTS Disable
Bandwidth 20MHz
Guard Interval 0.8μs
Channel number 36(5180MHz)
Transmit power 20dBm
Number of AP/STA 1/1
Number of Antennas 1
Traffic type UDP, DL, Full Buffer
Carrier sense threshold -100dBm
Simulation duration 10s
Number of Steps per sim 180
Step time 0.06s

communicate while the receiving terminal is moving away at

the speed of 7m/s. The simulation uses fixed MCS 0-8 or

Minstrel rate control. The average MAC throughput at 0.06s

intervals is shown in Fig. 2. It shows that Minstrel causes

a sharp drop in throughput when the appropriate MCS is

switched. There are also other areas where throughput drops.

This is due to the random selection of MCSs by the ”look

around” mode.

III. RATE CONTROL BY DEEP Q-NETWORK

Deep Q-network (DQN), also known as deep reinforcement

learning, is a learning method that repeatedly tries to approach

the correct answer from multidimensional information [12]. By

using a neural network, it is possible to learn complex envi-

ronments with multidimensional input. This section describes

the design and algorithm of the proposed DQN rate control.

A. System Overview

Fig. 3 shows a system overview. Throughput, current MCS,

and distance are simulated in the ns-3. The throughput is the

amount of data received per simulation step divided by the step

time. It is used to calculate the reward, which will be described

in the next subsection, DQN Framework. The neural network

is updated with the reward calculated based on the throughput.

Current MCS and The distance between the transmitter and

receiver are used as input to the neural network. Actions are

selected by ε-greedy between exploitative action by the neural
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Fig. 2. MAC throughput for mobility scenarios from 0m to 70m

TABLE III
DISCRETIZATION OF DISTANCE

Distance[m] Discretized (one-hot)
43.77∼ [100000000]

36.33∼43.77 [010000000]
28.24∼36.33 [001000000]
23.07∼28.24 [000100000]
16.77∼23.07 [000010000]
15.45∼16.77 [000001000]
14.32∼15.45 [000000100]
10.46∼14.32 [000000010]

∼10.46 [000000001]

network and random exploratory action. As shown in Fig. 4,

the neural network architecture is as follows.

• Input layer: 18 units of discretized MCS and distance

• Intermediate layer: 126 units (ReLu functions)

• Output layer: 3 units of up one MCS, not changing, or

down one MCS (Linear function)

The discretization of the distance is shown in Table III. The

distances in Table III were calculated by the log-distance path

loss model in equation (1) based on the SINR required to

receive signal in Table IV. The SINRs in Table IV were

calculated experimentally using ns-3 simulations. Exploitative

action was chosen to achieve the maximum value of the output

of the neural network, while the exploratory action was chosen

to give a random output. The actions are determined by ε-
greedy, which is updated by a specific rule. Once an action has

been determined by ε-greedy, it is passed to ns-3 for simulation

in the next time step.

B. DQN Framework

We describe in more detail the learning algorithm of DQN,

which is to maximize the expected long-term reward. The

reward is obtained from the environment after an action

has been taken. In this paper, the reward is -100 when the

throughput is 0Mbps. Otherwise, the reward is the difference

between the throughput at current and the previous time step,

TABLE IV
THE SINR REQUIRED TO RECEIVE SIGNAL

MCS Index S0[dB] Discretized MCS (one-hot)
0 3.97 [100000000]
1 6.55 [010000000]
2 9.39 [001000000]
3 13.21 [000100000]
4 16.29 [000010000]
5 21.13 [000001000]
6 22.38 [000000100]
7 23.54 [000000010]
8 28.31 [000000001]

as shown in the following equation

rt =

{
−100, Tpt+1 = 0.

Tpt+1 − Tpt, otherwise.
(2)

where Tp is throughput in Mbps.

The agent determines its action a from the output of the Q-

network based on the state s obtained from the environment,

as shown in the following equation.

at = arg max Q(st, at) (3)

In this study, action a is a set of three options: increase one

MCS, keep the current MCS, or decrease one MCS. As has

been mentioned, ε-greedy is used as the exploration policy. To

allow for uniform search, if action is chosen to move down the

MCS at MCS 0, it transitions to MCS 8. Similarly, if action is

chosen to move up the MCS at MCS 8, it transitions to MCS

0.

When an agent acquires a new reward through action, the

Q(st, at) is updated with the following rules for the state and

action of the previous time step.

Q(st, at) ← Q(st, at)

+α[rn+1 + γmax Q(st+1, at+1)−Q(st, at)] (4)

α indicates the learning rate at (0,1]. γ is also (0,1] and

indicates the discount rate. The discount rate is a value that

indicates what proportion of the long-term future reward is

used for the current update. In DQN, a neural network is

trained to update Q(st, at). It can be trained by minimizing

the loss function of the neural network. The loss function is

given by:

E = [rn+1 + γmax Q(sn+1, an+1)−Q(st, at)]
2 (5)

In this paper, the neural network is updated using the opti-

mization function Adam.

IV. NS-3 SIMULATION

A. Stationery Scenario

First, a simulation evaluation at a fixed location was per-

formed to show that the designed DQN rate control works.

In this scenario, a transmitter (Tx) and a receiver (Rx) are

10m away from each other; the two nodes are quite close to

each other, and there are no other interfering nodes. Therefore,

bandwidth can be used efficiently by using higher MCS levels.
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Fig. 3. Illustration of System Overview

Fig. 4. Illustration of Q-network

Table V shows the parameters for learning and the changes

made from the simulation parameters in Table II in Section

2. The transmission rate of data packets is controlled by the

DQN agent by increasing or decreasing the MCS level at each

time step.

The change in the MCS selected by the DQN agent in 500

steps over 50 seconds is shown in Fig.5. The simulation results

show that the DQN agent is able to select a higher MCS at

the end of the simulation. The reason why the values are not

stable during the learning process is due to the change in MCS

caused by the random selection by ε-greedy. Furthermore, the

average throughput at each step is shown in Fig. 6. Since there

are no interfering nodes, the throughput increases as a higher

MCS is selected.

B. Mobile Scenario

Next, we evaluate the DQN rate control in the mobile

scenario. For simplicity, we focus on the throughput drop at

11m in Fig. 2. In this scenario, there are one Tx and one

TABLE V
MODIFIED SIMULATION PARAMETERS AND TRAINING PARAMETERS IN

STATIONERY SCENARIO

Simulation duration 50s
Number of Steps per sim 500
Step time 0.1s
γ 0.9
α 0.1
ε initial value 1
ε minimum value 0
ε reduction 0.002

Rx, but the Rx moves away from 4m to 14m at 1m/s. Table

VI shows the parameters for training process and the changes

made from the simulation parameters in Table II in Section 2.

In the mobility scenario, the agent learns 1000 episodes, with

one episode of movement from 4m to 14 m. ε reduction is

performed at each episode.

After training 1000 episodes, the learned model was evalu-

ated using a scenario in which the Rx moves from 0m to 13m
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Fig. 5. MCS in the Stationery case(10m)

Fig. 6. Throughput in the Stationery case(10m)

at 7m/s. The results are shown in Fig. 7. The step interval was

set to 0.6s, the same as in the simulation in Fig. 2. From Fig.

7, Minstrel shows a sharp drop in throughput at 11m when

the optimal MCS switches from MCS 8 to MCS 7. However,

the proposed DQN rate control seamlessly switches the MCS

to the optimal one, preventing a sharp drop in throughput.

Evaluation results of the proposed DQN rate control show

that it improves throughput by up to 95%.

V. CONCLUSIONS

In this paper, we proposed a method for rate control using

DQN with MCS and the distance between the transmitting and

receiving nodes as inputs. ns3-ai was used to train a DQN

agent to determine the suitable MCS based on the distance.

We validated the proposed design in a stationery scenario

where it is converged in the learning. The validation with a

mobile scenario showed up to 95% improvement compared to

Minstrel. Future work includes training DQN agents on longer

moves and learning in more complex scenarios such as dense

networks.

TABLE VI
MODIFIED SIMULATION PARAMETERS AND TRAINING PARAMETERS IN

MOBILITY SCENARIO

Simulation duration 10s
Number of Step per sim 100
Step time 0.1s
Episode 1000
γ 0.9
α 0.1
ε 1
ε minimum value 0
ε reduction per episode 0.001

Fig. 7. Evaluation of throughput in the mobility case from 0m to 13m
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