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Abstract—Since production-level trained deep neural networks
(DNNs) are of a great business value, protecting such DNN
models against copyright infringement and unauthorized access
is in a rising demand. However, conventional model protection
methods focused only the image classification task, and these
protection methods were never applied to semantic segmentation
although it has an increasing number of applications. In this
paper, we propose to protect semantic segmentation models from
unauthorized access by utilizing block-wise transformation with
a secret key for the first time. Protected models are trained
by using transformed images. Experiment results show that the
proposed protection method allows rightful users with the correct
key to access the model to full capacity and deteriorate the
performance for unauthorized users. However, protected models
slightly drop the segmentation performance compared to non-
protected models.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have been
actively studied in many areas such as computer vision (CV)
and natural language processing, and their performance has
been greatly improved [1]. Especially in CV domain, the
performance of DNNs is approaching the practical level not
only for a simple classification task but also for advanced
tasks such as object detection and segmentation. Semantic
segmentation aims to recognize what is in the image at pixel
level and has an increasing number of applications such as
handwritten text recognition, automated driving, and medical
image analysis [2]–[4].

However, training a model with high performance is gen-
erally very expensive because it requires huge data, powerful
computing resources, and human expertise. For example, Ima-
geNet, which has more than 14 million images in over 20,000
categories, was created using much effort with crowdsourcing
to ensure that images were correctly labeled [5]. In addition,
training on such a large dataset consumes days and weeks even
on GPU-accelerated machines. Therefore, a model trained at
the production level has a great value and should be treated
as a valuable intellectual property (IP) considering its training
costs.

In the research to protect trained models, there are two
types of concepts, namely ownership verification and access
control. Ownership verification aims to reveal the ownership
of a model. The study in [6] proposed to embed a watermark
in a model without accuracy degradation. In [7], the authors
leave a backdoor by embedding watermarks in parts of the

training data and assigned them into new labels. However,
unauthorized users, such as the attacker who stole the model,
can use the model adequately same as authorized users without
arousing any suspicion. In addition, the stolen model can be
exposed to a variety of attacks, for instance, model inversion
attacks [8] and adversarial attacks [9]. Access control aims
that authorized users can fully utilize the benefits of the model,
while unauthorized users are not able to use the model in full
capacity. In this paper, we focus on access control and target
to prevent unauthorized users from using the model correctly
even if the model is stolen.

In recent studies on access control, authorized users perform
pre-processing on the input image, such as adding a noise
or block-based transformation [10]–[12]. The work in [10]
is inspired by adversarial examples [9], and perturbations
need to be added to the input images using a transformation
module to obtain correct predictions. The study in [11], [12]
introduced a secret key for protecting a model, and the method
was inspired by adversarial examples and image encryption
[13], [14]. The secret key-based protection method [12] uses
a key-based transformation that was originally used by an
adversarial defense in [15], which was in turn inspired by
perceptual image encryption methods [14], [16]–[19]. This
model protection method utilizes a secret key in such a way
that a stolen model cannot be used to its full capacity without
a correct secret key. However, these works were evaluated only
on the classification task, and it is not known how well they
perform on other advanced tasks.

Therefore, in this paper, we propose to protect semantic
segmentation models from unauthorized access by utilizing
block-wise transformation with a secret key for the first time.
In our scenario, training images are block-based transformed,
and segmentation models are trained using the transformed
images and the corresponding ground truth. The transforma-
tion methods are lightweight processing and do not require
any modifications to the model. Experimental results show
that the protection method allows rightful users with the
correct key to access the model to full capacity and deteriorate
the performance for unauthorized users. However, protected
models slightly drop the segmentation performance compared
to non-protected models.
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II. PROTECTING SEMANTIC SEGMENTATION MODELS

A. Overview

Figure 1 illustrates the framework for protecting seman-
tic segmentation models from unauthorized access. In this
framework, authorized users transform test images by using a
block-wise transformation with correct secret key K and input
the transformed images into a model. The model predicts the
transformed images correctly with high accuracy. In contrast,
unauthorized users are not able to transform test images
correctly because they do not know a necessary transformation
or correct secret key K (i.e., using an incorrect key K ′).
Therefore, the model returns inaccurate predictions to the
unauthorized users.

B. Semantic Segmentation

The goal of semantic segmentation is to understand what is
in an image at the pixel level. Figure 2 shows an example of
semantic segmentation. The segmentation model takes an input
image x with the shape c×h×w and outputs a segmentation
map (SM) with the shape 1 × h × w. Here, c, h, and w are
the number of channels, height, and width of x, respectively,
and each pixel in the SM represents a class label.

One of the common metrics to evaluate segmentation perfor-
mance is mean intersection-over-union (mean IoU) [20], [21],
which first computes the IoU for each class and then computes
the average over classes. The IoU metric is the area of overlap
between a predicted SM and a corresponding ground truth
(GT) divided by the area of the union. Mean IoU is defined
as

meanIoU(SM,GT ) =
1

class

class∑
i=1

|SMi ∩GTi|
|SMi ∪GTi|

, (1)

where class is the number of classes. In addition, the metric
ranges from zero to one, where a value of one means that a
SM and a GT overlap perfectly, and a value of zero indicates
no overlap.

C. Block-wise transformation Procedure

In this paper, we used block-wise transformation with a
secret key for access control of semantic segmentation mod-
els. The transformation was proposed in [15] for adversarial
defense. We perform the block-wise transformation in the
following steps (see Fig. 3).

1) Split Image: Segment an input image x with the shape
c × h × w into blocks. Each block has a shape of c ×
M ×M , where M is the block size.

2) Flatten Block: Flatten each block into a vector of length
c×M ×M .

3) Block-wise Transform: Each flattened block is trans-
formed using a block-wise transformation with provided
secret key K. All flattened blocks are converted with the
same key.

4) Concatenate Blocks: The transformed blocks are inte-
grated in the reverse order of the block splitting to obtain
the transformed image x′.

We used three transformation methods for the block-wise
transformation. The details of these methods are described in
the next section.

D. Transformation Methods

We utilize three transformation methods, namely, pixel
shuffling (SHF), negative/positive transformation (NP), and
format-preserving Feistel-based encryption (FFX) [22], in step
3 (see Fig. 3). Figure 4 shows a sample of images transformed
by using the methods.
SHF shuffles the values in the flattened block on the basis of
secret key K.
NP inverts selected values from the flattened block (i.e.,
subtract a value from 255) in accordance with K. In this paper,
we apply NP to half of the pixels in a block.
FFX , with a length of 3 digits, encrypts half of the pixels
in the block to cover the whole range from 0 to 255, and the
pixels are chosen by using K. The pixel values of the input
image are in the range from 0 to 255, whereas the encrypted
pixel values become in the range from 0 to 999. Then, all
pixel values are divided by the maximum pixel value after
the encryption to be standardized. In addition, FFX requires a
password for format-preserving Feistel-based encryption, and
we used a fixed password in this paper.

III. EXPERIMENTS AND RESULTS

In this section, we conduct experiments to validate the
effectiveness of the proposed framework (see Fig. 1) for
protecting semantic segmentation models.

A. Experimental Setup

We used a fully convolutional network (FCN) [20] with a
ResNet-50 [23] backbone as a semantic segmentation model.
FCN uses a backbone (e.g., ResNet-50) to extract features
from an input image and generates a segmentation map by
upsampling the output of the backbone to the same size (i.e.,
height and width) as the input image using bilinear interpo-
lation. We trained the network by using the PASCAL visual
object classes segmentation dataset in 2012 [24]. The dataset
consists of a training set with 1464 images and corresponding
ground truths, a validation set with 1449 images, and a test
set. However, we tested the model’s performance with the
validation set because the test set is only available on the
evaluation server and has limitations such as the maximum
number of submissions. The training set was divided into 1318
and 146 samples, and we used them for training and validation,
respectively. Since the block-wise transformation requires an
input image size to be determined in advance, we resized the
height and width of all images and masks to 256. In addition,
standard data-augmentation methods, i.e., random resized crop
and horizontal flip, were performed in the training.

All networks were trained for 100 epochs by using stochas-
tic gradient descent with a weight decay of 0.005 and a
momentum of 0.9. The learning rate was initially set to 0.1
and scheduled by cosine annealing with warm restarts [25].
Here, the minimum learning rate was 0.0001, and the learning
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Fig. 2. Example of semantic segmentation

rate was restarted every ten epochs. The batch size was 256.
We used the cross-entropy loss to calculate a loss. After
the training, we selected the model that provided the lowest
loss value under the validation. In addition, we evaluated the
segmentation performance by using mean IoU.

B. Segmentation Performance

To evaluate the effect of the block-wise transformations on
segmentation performance, we trained models by using images
transformed by various transformations with different block
sizes. Table I shows the experimental result, where “SHF,”
“NP,” and “FFX” indicate that the training and test images
were transformed by the respective methods, and “Baseline”
means that all images were not transformed. Example of
input images, the ground truth (GT), and the predictions (i.e.,
segmentation maps) of the models with M = 2 are shown in
Fig. 5. The numbers below the prediction maps indicate the
mean IoU values between the ground truth and the prediction
maps.

From Table I, the segmentation accuracy of SHF dropped
significantly as the block size was increased. NP and FFX also
decreased the accuracy when the block size was increased, but
the loss of accuracy was less than that of SHF. The reason
why SHF is sensitive to the block size may be that location
information is critical in the segmentation task. In addition,
all protected models slightly dropped the segmentation per-
formance compared to the baseline, even in the most accurate
conditions (M = 2).

C. Access Control Performance

In this section, we tested protected models by using plain
images and images transformed with incorrect key K ′ (i.e., a
different key from a correct one used in the model training)
to verify access control performance. The protected models

TABLE I
SEGMENTATION ACCURACY (MEAN IOU)

OF PROTECTED MODELS AND BASELINE MODEL

Block size M SHF NP FFX Baseline
2 0.6597 0.6216 0.5271

0.7080

4 0.5941 0.5695 0.4944
8 0.4723 0.5173 0.4651

16 0.2958 0.4329 0.3444
32 0.1575 0.3880 0.2763
64 0.0693 0.3733 0.2628
128 0.0600 0.3218 0.2417
256 0.0380 0.3007 0.2367

were trained with images transformed by each transformation
method (i.e., SHF, NP, and FFX) with correct key K. Figure 6
shows the experimental result, where “Plain” and “Incorrect”
indicate that the models were tested by using plain images and
images transformed with K ′, respectively, and “Correct” refers
that the models were tested by using images transformed with
K (same as Table I). For “Incorrect,” the results were averaged
over 100 incorrect keys.

As shown in Fig. 6, among three transformations, FFX had
the best access control performance, however, it had a lower
segmentation accuracy. Although SHF and NP had a high
segmentation accuracy for small block sizes, the models still
worked well for unauthorized access (i.e., using plain images
and transformed ones with K ′), indicating a lower access
control performance. Therefore, there is a trade-off between
segmentation accuracy and access control performance.

IV. CONCLUSION

We proposed a method to protect semantic segmentation
models from unauthorized access by using block-wise trans-
formations, namely pixel shuffling (SHF), negative/positive
transformation (NP), and format-preserving Feistel-based en-
cryption (FFX). In particular, we evaluated the access control
performance of the transformations in semantic segmentation,
which has not been tested in previous studies. In experiments
with a correct key, the highest accuracy was achieved in the
three transformations by SHF, followed in order by NP and
FFX, when the block size was small. However, all protected
models dropped the segmentation performance compared to
the baseline. We also confirmed that the protected model with
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FFX, which has a small block size, provided inaccurate results
for unauthorized users who do not know the correct key or
transformation. As future work, we will improve the protected
model’s performance and evaluate robustness against various
attacks.
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