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Abstract— Upper limb’s Surface Electromyography (sEMG) 
has been widely investigated and used for controlling of 
rehabilitation and prosthetic robots.  However, accurate 
acquiring and processing of the sEMG signals requires an 
expensive commercial EMG system. In addition, proper analysis 
of the processed sEMG signal is also required to obtain beneficial 
information. Therefore, this research investigates the efficiency of 
using a low-cost EMG sensor, specifically MyoWare Muscle 
Sensor from advancer technology, in collecting an accurate sEMG 
signal. The electrical activity of biceps and triceps muscles were 
collected using Myoware Muscle sensor to investigate how 
accurate the aforementioned sensor in fulfilling two objectives. 
Firstly, interpreting the subject’s intention in terms of flexing and 
extending the upper limb at elbow joint. Secondly, assessing the 
localized muscle fatigue that accompanies biceps and triceps 
during contraction. The collected sEMG signals were processed, 
filtered, segmented and specific features were extracted in time 
and frequency domains. Six features, namely, MAV, RMS, SAV, 
SD, ZC, and SSC, were extracted from the segmented sEMG in 
time domain to predict the user’s intention of flexing and 
extending the elbow joint. In addition, frequency-domain features, 
specifically the mean frequency MNF and the median frequency 
MDF, were also extracted to evaluate the sensor’s efficiency in 
assessing the localized muscle fatigue. In terms of predicting the 
user’s intention, results showed that only particular features, 
specifically SAV and SD, were able to efficiently interpret the 
flexion and the extension of the elbow joint. However, MNF and 
MDF have both accurately assessed the localized muscle fatigue 
over the time. Consequently, special attention should be taken 
when dealing with low-cost EMG sensor.  

I. INTRODUCTION

World health organization (WHO) has reported that up to 
20% of stroke survivors requires an intensive rehabilitation 
program. The rehabilitation process can be implemented by 
either professional therapist or special designed rehabilitation 
robots [1]. The high cost of providing a therapist for each stroke 
patient pushed the researchers to improve the performance of 
the rehabilitation robots [2]. Analyzing the surface 
Electromyography (sEMG) signal is one of the controlling 
techniques that is widely used for rehabilitation robots [3]. 
sEMG extracted from limbs’ muscles was frequently 
investigated by many researchers to predict the user’s intention 
in terms of limb movements [4]. Additionally, biceps and 
triceps were identified as the main muscles that are responsible 
for flexing and extending the elbow joint respectively [2] [5].  
The analysis of the sEMG involves extracting specific features 
that are useful for interpreting the limb movement and muscle 
fatigue. The sEMG features are categorized according to the 
analyzing domain, hence there are two types of features that are 

Time-Domain features and Frequency-Domain features [6] [5]. 
Time-Domain (TD) features includes Mean Absolute Value 
(MAV), Root Mean Square (RMS), Waveform Length (WL), 
Log Detector (LD), Skewness (SKEW), kurtosis (KURT), 
Standard Deviation (SD), Summation of the Absolute  (SAV), 
etc. [5]. Frequency Domain (FD) features includes Mean 
Frequency (MNF), Median Frequency (MDF), Wavelet 
Decomposition (WDC), etc. [7]. Time-domain features, 
however,  require less computing time and hence are preferred 
for real time applications [8] [5] [9]. 

Time-domain features such as RMS, MAV, SD and SAV 
have been reported to have high value when the muscle is 
contracted. In contrast, low values of the aforementioned TD 
features were recorded when the muscle is relaxed [10] [3]. On 
the other hand, Frequency Domain features such as MNF and 
MDF have been widely used to assess the localized muscle 
fatigue, where the value of both features decreases as the 
fatigue progresses [1] [11] [12] [13] [14]. It should be noted 
that “muscle fatigue” and “pain” are also alternatives terms to 
the localized muscle fatigue [14] [11]. 

The electrical activity of the Biceps and triceps were 
repeatedly investigated using both commercial expensive EMG 
system and low-cost EMG configuration. MyoWare Muscle 
EMG Sensor produced by the Advancer technologies is a low 
cost EMG sensor that is popularly used by the researchers [15]. 
However, most of the recent studies lack for proper 
acquisitioning and proper analyzing for the acquired signal.  

MyoWare muscle sensor has been used in several researches 
to collect the sEMG and further analyzing was then applied on 
the collected signals. [16] have used four MyoWare muscle 
sensors that were placed on the upper limb muscles. The sEMG 
was extracted from biceps, triceps, wrist flexor carpi radialis, 
and wrist extensor carpi radialis muscles to predict the potential 
movements of the upper extremity including flexion and 
extension of upper limb.  K-NN classifier and three specific 
features that are (RMS), (WL), and (MAV) were used for 
detecting the user’s intention. The obtained mean classification 
error was identifying as 5.9% according to the authors. 
However, Arduino Mega was used to digitize the acquired 
signal which may weigh down the sampling frequency [15]. 
Furthermore, the study involved using the ready enveloped 
EMG signal, not the raw EMG, that is provided by the 
MyoWare sensor and ultimately a proper analyzing for the raw 
EMG signal is still required. 

[17] have used Double MyoWare muscle sensors to collect
the sEMG signals from biceps and triceps for the purpose of 
interpreting the basic hand movements. Multiple features such 
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as root mean square, Skewness and kurtosis were extracted and 
then an Artificial Neural Network was used to classify the 
acquired sEMG signal. According to the authors, the proposed 
methodology was able to interpret basic hand gestures 
including hand closing, hand opening, hand clipping and 
clipping to resting. In this study, Arduino Mega was used as 
data acquisition card to digitize the acquired signal and import 
it to the Matlab for further analyzing. In addition, the authors 
used the enveloped signal, not the raw EMG, provided by the 
MyoWare sensor [18]. Proper analyzing for the acquired 
signals and feature extraction was not included in this study 
though. Nonetheless, the value of the sampling frequency of 
the acquired signal was not identified in the aforementioned 
study.  

The validity of using the MyoWare muscle sensor on 
acquiring the sEMG was also evaluated by [15], where a single 
sensor was placed on the rectus femoris to report the muscle 
activity. Arduino Mega was also used to digitize the acquired 
signal.  The study compared between the MyoWare sensor 
configuration and a commercial expensive EMG system. The 
results showed a similar behavior between the two 
configurations according to the authors. However, neither 
time-domain nor frequency-domain features were extracted 
and compared from both systems.  

As mentioned earlier, the MyoWare muscle sensor 
accompanied with an Arduino was used to acquire and digitize 
the sEMG signal. The obtained results, however, are not 
hundred percent reliable as the Arduino has its own memory 
limitations. Furthermore, the sampling frequency was not 
accurately specified which may produce wrong information 
due to Nyquist rate [15].  

Extracting the optimum EMG features based on using 
MyoWare muscle sensor and analyzing them properly require 
further investigation. In other words, MyoWare muscle sensor 
that is intended to be used for controlling potential robots 
requires further experiments and analyses to prove its 
efficiency. Therefore, this research tests the efficiency of using 
MyoWare muscle sensor to collect the sEMG signal from the 
Biceps and Triceps muscles. A proper analyzing is then applied 
on the acquired signal to fulfil two objectives: firstly, extracting 
specific time-domain features for detecting the user’s intention 
in terms of flexing and extending the upper extremity at elbow 
joint. Secondly extracting specific frequency-domain features 
for assessing the localized muscle fatigue of the contracted 
biceps and triceps. 

The rest of the paper is arranged as follows: next section 
explains the general configuration of the research and the 
materials were used. Section 3 discusses the results and 
identifies the most suitable features for controlling purposes 
and fatigue assessment. Finally, section 4 concludes the results . 

II. MATERIALS AND METHODS

Evaluating the ability of the MyoWare muscle sensor in 
acquiring an accurate sEMG signal from the biceps and triceps 
is the main purpose of this research. Data were collected from 
five healthy subjects with mean age of 33 ± 3.5 years. The two 
targeted muscles, biceps and triceps, were firstly shaved and 

cleaned before the application of the electrodes [15]. European 
Recommendations for Surface Electromyography (SENIAM) 
[19], and the guidelines of the International Society of 
Electrophysiology and Kinesiology (ISEK) [20] were followed 
for better acquiring of the EMG signal. Subjects were asked to 
perform two protocols to collect the sEMG through the 
MyoWare muscle sensor as following:  

Protocol one: subjects were asked to fully extend their upper 
limb (forearm is straight, contracted triceps while relaxed 
biceps), and the raw EMG was collected for 10 seconds from 
both muscles (triceps and biceps). Then, the subjects were 
asked to flex their upper limb at angle of approximately 150° 
(contracted biceps while relaxed triceps), and also the raw 
EMG was collected for 10 seconds from both muscles (triceps 
and biceps) as shown in Figure 1. In conclusion, we had four 
types of raw EMG data (relaxed triceps’ EMG data, contracted 
triceps’ EMG data, relaxed biceps’ EMG data and contracted 
biceps’ EMG data). This protocol was dedicated to predicting 
the user’s intention in terms of flexing and extending the upper 
extremities at elbow joint. 

Protocol Two: subjects were asked to fully extend their 
elbow joint while holding a weight of 2 Kgs. The raw EMG 
was continually collected from the contracted triceps until the 
subjects reported a sort of discomfort as shown in Figure (2A). 
Same steps were followed to record the raw EMG data from 
the biceps. Where the subjects were asked to flex their elbow 
joint against a force and the raw EMG data from the contracted 
biceps was also continually recorded until the subject reported 
a sort of discomfort [12] as shown in Figure (2B). In conclusion, 
we had two types of raw EMG data (contracted triceps’ EMG 
data and contracted biceps’ EMG data with applied force) This 
protocol was dedicated to assessing the localized muscle 
fatigue using the potential sensor. 

Such protocol was followed as it was previously proved that 
the fatigue becomes onset once the subject cannot keep the 
activity. Therefore, the subjects were encouraged to perform 
this protocol until they had a sort of discomfort feeling, which 
was considered the fatigue was being progressed throughout 
the session.  

The mentioned two Protocols were approved by the ethics 
committee of the Universiti Putra Malaysia (UPM) with 
reference number (JKEUPM-2021-263). The experiment setup 
and configuration is shown in Figure 3, MyoWare muscle 
sensor (AT-04-001) from advancer technology was placed on 
the biceps and triceps muscles to acquire the surface EMG 

Fig.1 protocol of Collecting the raw EMG data from the 
Biceps and Triceps During Extension and Flexion 
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signal [15]. Following subsections explain the configuration in 
detail

A. Data Collection
MyoWare Muscle sensor, that converts muscles’ electrical

activity to an analog output signal, was placed on the biceps 
and the triceps. This sensor is characterized by having three bio 
potential pins which are responsible for detecting the muscle’s
electric activity. Each pin is connected to a disposable electrode
for better acquiring of the sEMG signal. Covidien disposable 
electrode (H124SG) was used for this purpose which has 
shown an efficient acquiring for the signal [17].

Two electrodes were placed on the middle of the muscle and 
the last electrode was used as reference electrode and placed on 
non-adjacent muscular tissue. The small size of the MyoWare 
Muscle sensor makes it suitable to be placed on the muscle, in 
addition a tie was applied on the sensor to assure fixed 
attachment between the sensor and the muscle as shown in 
Figure 4 [6]. 

Data Acquisition device (USB6001) provided by National 
Instrument was used to convert the produced analog sEMG 
signal into a digital signal which was then sent to a PC for 
further processing. DAQ device (USB6001) has a resolution of 
14-bits and sampling rate of 20,000 samples/second. However,
the acquired analogue signal was sampled at frequency of 2000 
Hz as explained in next subsection.

B. Signal Processing and Filtration
Analog input recorder, which is an application that is

provided by Matlab (2018), was used to record the acquired 

sEMG signal. The frequency of the recorded sEMG signal lies 
within a range of 400-500Hz, therefore sampling the recorded 
signal at frequency of 2000Hz was considered sufficient to 
avoid aliasing based on the Nyquist rate. It should be noticed 
that increasing the sampling frequency could provide more 
information about the recorded signal, however high sampling 
frequency requires high computation time and compromises 
the real time processing. 

sEMG signal is usually accompanied with many noises due 
to cross talk, motion artifacts and ambient noise [5]. Therefore, 
preprocessing and filtration is required prior features extraction. 
Matlab 2018 was used to process and filter the recorded EMG 
signal. Firstly, the DC offset of the recorded signal was 
eliminated [10]. Secondly, Butterworth band pass filter was 
applied on the produced signal to pass only EMG frequencies 
components that lay within a range of (4-500Hz). Butterworth 
filter was chosen as it provides maximum flat response between 
the cutoff frequencies [10]. Finally, band stop filter was applied 
on the recorded signal to eliminate power line’s frequency 
component which is 50Hz (or 60Hz in other countries) [15].  

C. Segmentation Process
Processed and filtered EMG signal should be continuously

measured for the purpose of real-time motion pattern 
classification. Hence, the raw EMG signal was firstly 
segmented prior the application of feature extraction. 

The raw EMG signal was segmented to windows of 250ms, 
and overlapped of 125ms between segments for extracting the 
time-domain features [16]. Provided that the acquired sEMG 
was sampled at 2000Hz, this segment’s length provides 500 
samples per each segment which is considered sufficient for 
real time processing. However, increasing the segment time 
would increase the computation time and decrease the real time 
response [5]. Segmentation process for extracting the 
frequency domain features, however, requires longer segment 
length [12]. Therefore, a segment length of 3 seconds was used 
[6]. Segment length of 3 seconds provides 6000 samples per 
segment which ultimately provides more reliable results.

D. Feature Extraction
Feature extraction is the mathematical operation that

transforms the raw EMG signal into more meaningful 
information which is called Envelop. Thus, Feature extraction 
plays a significant role in pattern classification [5] [10]. 

Six time-domain features were chosen to be extracted from 
the processed, filtered, and segmented sEMG signal. The six 
features are Mean Absolute Value (MAV), Root Mean Square 
(RMS), Standard Deviation (SD), Summation of the absolute 
Value (SAV), Zero Crossing (ZC) and Slop Sign Change (SSC). 
The aforementioned features were chosen due its ability in 
distinguishing and differentiating elbow joint flexion and 
extension [5] [17].  Following are mathematical expressions of 
the six features [10][17]
Mean Absolute value (MAV) is represented as following:

  (1)

Root Mean Square (RMS) is represented as following: 

Fig. 2: Protocol of collecting the raw EMG: (A) triceps, (B) biceps

A B

Fig. 3: Experiment setup and configuration

Fig. 4: shows how the tie was used to assure the fixed 
contact between the EMG sensor and the biceps muscle

SS1-4 2022 International Workshop on Smart Info-Media Systems in Asia (SISA 2022), Sep. 15–16, 2022

17



   (2)

Standard Deviation (SD) is represented as following: 

(3)

Summation of the Absolute Value (SAV) is represented as 
following

         (4)

Where ( ) represents the segments number, ( ) represents the 
length of the segment, (k) represents the value of the current 
bin, and represents the mean value of the whole segment. 

Zero Crossing (ZC) refers to the number of times that the raw 
EMG signal crosses the zero baseline or another identified 
baseline, and eventually reflects the frequency components of 
the signal, ZC is represented as following

         (5)

Slope Sign Change (SSC) shows the number of times that 
the waveform’s slope changes its sign. SSC is represented as 
following:

         (6)

As shown in equations (5) and (6), the threshold must be 
identified prior the application of ZC and SSC which can be 
represented as following:

                                          (7)
represents the mean value of the identified segment
represents the standard deviation value of the identified 

segment, has been calculated by and hence was set to 3

Mean frequency (MNF) and median frequency (MDF) are 
the frequency-domain features that were chosen to assess the 
localized muscle fatigue. MNF and MDF have been identified 
in several studies and shown an accurate assessment for the 
localized muscle fatigue [11][12] [14]. The instantaneous mean 
frequency and median frequency were calculated from 
previously segmented signal using time-frequency analysis 
which is popularly known as short time Fourier transform 
(STFT) [14]. Furthermore, linear regression analysis was used 
to show the slope coefficients of the obtained results in addition 

to the intercepts values [11]. Following are mathematical 
expressions of the MNF and MDF [14]: 
Mean Frequency (MNF) is represented as following:

                                        (8)

Median frequency is defined as the frequency that divides 
the power spectrum into two regions with equal amplitude [14].
Median Frequency (MDF) is represented as following:

         (9)

Where ( ) represents the segments number
( ) represents the length of the segment 
( represents the frequency value at bin (
( represents the power spectrum value at bin (

Consequently, this study has considered the parameters that 
could substantially affect the accuracy of the acquired sEMG 
signal. 

III. RESULTS AND DISCUSSION

As mentioned earlier, the purpose of this study is to evaluate 
the efficiency of the MyoWare muscle sensor in acquiring an 
accurate sEMG signal from the biceps and triceps. The 
acquired sEMG signals were then analyzed in time and 
frequency domains. 

Firstly, analyzing the acquired signal in time domain was 
dedicated for detecting user’s intention in terms of flexing and 
extending the upper limb at elbow joint. MAV, RMS, SD, SAV, 
ZC and SSC are the time-domain features that were extracted 
from the acquired signal from both muscles (triceps and biceps) 
during the first protocol. 

As shown in table (1), It was found that the average
magnitude of the MAV, RMS, SD and SAV for five seconds 
are higher for the triceps during the extension, while they are 
smaller during flexion. The situation is completely opposite for 
the biceps, where the magnitude of the MAV, RMS, SD and 
SAV are higher during the flexion and smaller during extension. 
Moreover, SD and SAV showed a distinct difference between 
flexion and extension for both biceps and triceps. It also should 
be noticed that the SAV showed larger differences in terms of 
its magnitude for both triceps and biceps during extension and 
flexion.

The other two features (ZC and SSC) follow different 
behavior during extension and flexion. Both features are higher 
for the biceps during extension and smaller during flexion. 
Whereas the ZC and SSC are higher for the triceps during 
flexion and smaller during extension (table 1). Furthermore, 
SSC showed more accurate behavior when it is compared to 

Triceps Extension Flexion Biceps Extension Flexion
MAV 0.0087 0.0024 MAV 0.0034 0.0058
RMS 0.0129 0.0036 RMS 0.0044 0.0078
SD 0.0131 0.0033 SD 0.0050 0.0093

SAV 52.1455 14.2220 SAV 20.2863 35.0413
ZC 43.8533 44.6000 ZC 29.3261 24.2000

SSC 81.87 139 SSC 113.2391 98

Table 1: shows the differences between EMG features for 
triceps and biceps during extension and flexion
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the ZC. Where the value of the SSC magnitude varies 
dramatically when the state changes from flexion to extension 
and vice versa. It can be concluded that the MAV, RMS, SD 
and SAV are higher when the muscle is active. ZC and SSC, 
however, exhibit small values when the muscle is active and 
vice-versa. 

Based on the obtained results, MAV, RMS, SD, SAV and 
SSC are the features that have efficiently interpreted the flexion 
and the extension of the upper limb at elbow joint. ZC, however, 
showed different and intersected values during flexion and 
extension of the upper extremities.  Furthermore, SD, SAV and
SSC are the features that have shown better performance when 
they compared to the rest of the features. Thus, it’s also 
recommended to combine these three features extracted from 
double sensors for better detection of user’s intention [21]. 
However, if using double EMG sensors is not feasible, the 
authors suggest using single EMG sensor placed on the triceps 
which has shown better explanation of the flexion and 
extension of the upper limb at elbow joint.

Secondly, the acquired signal was also analyzed in 
frequency domain to evaluate the efficiency of the MyoWare 
muscle sensor in assessing the localized muscle fatigue. MNF 
and MDF are the frequency-domain features that were 
extracted from the acquired signal from both muscles (triceps 
and biceps) during the second protocol. 

As shown in figure (5), Results showed that MNF and MDF 
exhibited negative slope. Moreover, the existence of force 
accelerates the progress of localized muscle fatigue, which 
agrees with literature [11][14][12]. In conclusion, MyoWare 
muscle sensor showed good performance in assessing the 
localized muscle fatigue based on the calculated MNF and 
MDF.

Tables (2&3) summarize the obtained results of the 
aforementioned features in terms of interpreting the flexion and 
extension of elbow joint and muscle fatigue assessment.

Using low-cost non-invasive EMG sensor requires special 
attention for ensuring accurate acquiring, processing, and 
analyzing of the EMG signal. For instance, sensor’s main two 
electrodes had to be placed in a line with the muscle, where one 
of the electrodes was placed on the muscle’s belly and the 
second one was lined up along the length of the muscle. It was 
found that wrong attachment of the electrodes substantially 
affects the strength of the acquired signal. In addition, it is 

recommended to place the reference electrode on boney or non-
adjacent tissue, otherwise the strength of the acquired signal is 
compromised. 

Although Covidien electrode has a gelled adhesive side that 
assures a good conduction between the sensor and the muscle 
[17], a tie was required to assure the fixed attachment on the 
muscle. Loose attachment of the sensor could cause a sudden 
movement and ultimately effect on the acquired signal. 

IV. CONCLUSION 

sEMG signals of the biceps and triceps were acquired using 
MyoWare Muscle sensor from advancer technologies. The 
acquired signal was processed, filtered, and segmented, then 
time-domain features (MAV, RMS, SAV, SD, ZC, and SSC) 
and frequency-domain features (MNF and MDF) were 
extracted. These features were extracted to check how accurate 
the MyoWare sensor in interpreting elbow joint movement and 
fatigue assessment. 

The study showed that the MAV, RMS, SD, and SAV follow 
the same behavior, where their magnitude is high during the 
activation of the muscle. ZC and SSC, however, showed 
different behavior, where their magnitude is small during the 
activation of the muscle. Furthermore, SAV, SD and SSC are 
the most accurate features that can be used to explain the 
flexion and the extension of the upper limb at elbow joint. 

In addition, localized muscle fatigue was also assessed by 
calculating the MNF and MDF. Both features, the MNF and 
MDF, showed good performance in assessing the fatigue.

To conclude, MyoWare muscle sensor can efficiently be 
used to assess the localized muscle fatigue. However, detecting 
the user’s intention in terms of flexing and extending the elbow 
joint requires special attention to choose the optimum feature.

Time-Domain Features MAV RMS SAV SD ZC SSC
Did the feature exhibit 
distinct behaviors 
between contracted and 
relaxed investigated 
muscle?

Yes Yes Yes Yes No Yes

Frequency-Domain Features MNF MDF

Did the feature efficiently assess the 
progressing of localized muscle fatigue?

Yes Yes

Table 2: Summarizes the efficiency of the time-domain features in interpreting 
the flexion and extension of the elbow joint using Myoware Muscle Sensor. 

Table 3: Summarizes the efficiency of the frequency-domain features in detecting 
the progressing of localized muscle fatigue Using Myoware Muscle Sensor.

Fig. 5: shows how MNF and MDF behave throughout protocol two
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