
Component-based FPGA Development

for Intelligent Robotics

Takeshi Ohkawa*
*Tokai University, Japan

Abstract— Intelligent robots need versatile kinds of processing

such as image processing, probabilistic matching, neural

network and so on. Processing which is enough standardized can

be done on a hardwired LSI chip, however, advanced features

need reconfigurability of algorithm by using FPGA chip.

However, the development cost of FPGA is still high even with

using the HLS (High-Level Synthesis). This paper proposes a

novel approach to improve the reusability of FPGA IPs by

introducing a component-based design method by inter-FPGA

component and intra-FPGA component.1

I. INTRODUCTION

Versatile kinds of tasks are required to construct an

intelligent robot. Also, Various hardware accelerators are

used to improve the insufficient performance of software

processing. Most of the general processing has already been

realized as dedicated hardware, and dedicated hardware

processing is performed in the computer system without

consciousness of software developers. For example, GPU

(Graphics Processing Unit), which is an LSI (Large Scale

Integration) chip dedicated to graphics processing, performs

most of graphics processing for screen display and basic

image processing of camera input.

Software libraries such as OpenCV, which is for computer-

vision image processing, generally hide these hardware

processes. Therefore, software developers can benefit from

hardware acceleration without explicitly writing the software

description, which is required for the acceleration of

processing. On the other hand, it is necessary for dedicated

software processing used for intelligent robots to write use

hardware processing such as GPU. For example, processes

used for intelligent robots include stochastic matching

processing used for SLAM (Simultaneous Localization and

Mapping), Kalman filter, particle filter for sensor input data,

and so on. Processing for these intelligent robots has many

computations and does not reach the required performance,

especially in the case of embedded computing in a robot.

Although there are many kinds of processing which need

acceleration, it is not always possible to prepare dedicated

hardware accelerator.

Utilization of FPGA, which is an LSI capable of real-time

processing with high energy efficiency, is expected to solve

the above issue. Since FPGA is an LSI chip that can realize

arbitrary digital circuits by a software-like program, it is

possible to freely realize parallel processing and memory-

1 This research and development work was supported by the MIC/SCOPE

#152103014 and JSPS Kakenhi grant (17K00072). The authors also thank to
Xilinx University Program and Intel University Program.

hierarchical architecture specialized for the application. Since

any circuit can be freely programmed, FPGA can be applied

to unprecedented advanced processing such as robot-specific

software processing with high energy efficiency.

The difficulty of using FPGA in robots is that designing a

high-performance circuit is time-consuming and needs

hardware-expertise since it is done at the digital circuit level.

In general, application development of FPGA is done at

circuit level by RTL (Register Transfer level) using HDL

(Hardware Description Language). RTL describes the clock-

cycle accurate behavior of all registers which work in parallel

so that each line of source code works in parallel. It is good to

describe circuit in detail; however, it is humble to describe

sequential behavior. So, development productivity is much

lower than ordinary software. Recently, HLS (High-Level

Synthesis) [1] has become popular for generating HDL from

software language such as C/C++. For example, an image

processing library [2] in C language for HLS is available,

which is easy to understand and reuse. However, a high-

performance circuit using HLS still needs expertise

knowledge of FPGA [3].

On the other hand, in a wide field of robot engineering, it is

not realistic to grasp many necessary technologies for all the

specialized fields in robot development. I proposed ROS-

compliant FPGA component [4] in order to introduce any

FPGA processing circuit easily to robot systems. ROS (Robot

Operating System) is a kind of software platform which

supports component-oriented development. By using ROS-

compliant FPGA component, FPGA can be easily introduced

to robots, so reusability of FPGA circuits can be improved.

The above FPGA component treats FPGA communication

with the outside the FPGA device. Another aspect of FPGA

development is the component-based development of inside

FPGA device. MATLAB/Simulink or LabView are the

widely-used tools of model-based and component-based

development platform for FPGA. They are well optimized for

their target applications since they are commercial products.

As a general solution, a component-based design method by

using FPGA circuit modules based-on Publish-Subscribe

communication is also proposed [7], inspired by the ROS-

compliant FPGA component.

This paper proposes a novel method to develop intelligent

robots using the previously proposed FPGA component

technologies. The contributions of this paper are:
⚫ Proposal of a novel idea of inter/intra-FPGA

component based on Publish/Subscribe architecture

⚫ Proposal of a novel design approach of an intelligent
robot using the intra/inter-FPGA component

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

11
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

II. COMPONENT-BASED FPGA DEVELOPMENT

Component-based development is a widely-accepted

development method to improve the design productivity of

software system. On the other hand, development

environment for FPGA is not so useful compared to one for

software. In this section, several aspects of component-based

development of FPGA for intelligent robotics are discussed.

The idea of component-based development can be widely

applied. Therefore, one can imaging many things for the word

“component”. Here I categorize the methods of component-

based FPGA development into two:

⚫ (A) Inter-FPGA component

⚫ (B) Intra-FPGA component

The inter-FPGA component is for inter-FPGA development

with inter-communication among FPGAs or other software.

On the other hand, intra-FPGA component is for intra-FPGA

development inside FPGA. Ideally, the two should be

integrated into one, however, performance requirement does

not allow inter-FPGA communication sometimes. That is, the

communication overhead between component is the issue for

this kind of component technology. Therefore, the discussion

in this paper categorize the component technology into two.

A. Inter-FPGA component for inter-FPGA development

In a system which has multiple FPGAs, or a system which

has an FPGA device and other microprocessor, there is a need

of communication from/to FPGA. In such cases, the idea of

component-based development is effective to improve the

design reusability of FPGA.

For example, FPGA which can communicate through

TCP/IP can be an FPGA component, which can be operated

from outside FPGA. However, TCP/IP is an infrastructural

communication protocol below application layer. It means the

semantics and the interpretation of the message totally

depends on the target application.

To realize a generic FPGA-component which can be

operated by software, several studies have been done. A

hardware/software (hw/sw) complex system [11] that

combines hw (an FPGA) and sw (a CPU). This is an idea to

have software interface for hardware (FPGA) and other

software can operate FPGA as a software. ORB Engine [11]

is an approach to make FPGA a CORBA object. CORBA [17]

(Common Object Request Broker Architecture) is a standard

software technology by which a method of remote object can

be called through network message, in the manger of object-

oriented programming (OOP). A succeeding specification

which is independent from OOP is the DDS [18] (data

distribution service). DDS focuses on data flow and the

communication QoS (Quality of Service) rather than object

method call.

Another movement is application domain specific approach

of realizing FPGA a component. ROS (Robot Operating

System) is a kind of software platform which supports

component-oriented development. ROS-compliant FPGA

component [4] is proposed to easily introduce FPGA into

robots. An automated design tool was also proposed [5] which

generates the communication path between ROS message and

circuit as software. However, it is still a problem that its

communication performance is very low because of

embedded processor, which needs less power but low in

processing performance. Therefore, a hardwired ROS

protocol interpretation and communication circuit for high-

performance data communication is proposed [6]. COMTA

(Connective Object for Middleware to Accelerator) [13]

provides communication channel as Data object and SHM

(Shared memory) object to FPGA by using ARM processor

on SoC-FPGA, such as Xilinx Zynq or Intel SoC-FPGA

device.

The above technologies are to communicate FPGA with

software outside the FPGA device.

B. Intra-FPGA component for intra-FPGA development

Even inside an FPGA device, there are multiple circuit

modules which have various functionality. The benefits of

component-based development are also applicable to the

intra-FPGA development.

MATLAB/Simulink is the widely-used tool of model-based

and component-based development platform for FPGA.

LabView is also a well-known tool by NI. Since the tools are

commercial, the tools are very optimized to their products.

A generic approach of model-based and component-based

development is inspired by the ROS-compliant FPGA

component technology. A design method of realizing

Publish/Subscribe communication on the FPGA is proposed

[7]. The effectiveness of Publish/Subscribe communication

model is widely recognized as the model to express data flow

of application with the Internet or intelligent robots, namely in

ROS. In other words, the model that Subscribers receive only

the necessary topics among the information sent by Publishers

represents the natural structure of information processing in

the era of big data. For example, ROS (Robot Operating

System) improves scalability, expandability and reusability of

robot software parts by designing and implementing

communication among a lot of software processes with the

Publish/Sub-scribe communication model.

III. INTER-FPGA COMPONENT TECHNOLOGY

This section describes the previously proposed ROS-

compliant FPGA component, which can be categorized into

the inter-FPGA component. Expected role of the FPGA is

accelerating an application processing such like computer-

vision algorithm, filter and so on. At the same time, the

application processing on the FPGA must communicate with

the outer system, i.e. ROS software nodes surrounding the

application processing. Therefore, the FPGA component must

have two interfaces in addition to the “Application

processing”, that are “Interface for input” and “Interface for

output” as shown in Figure 1.

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

12
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

“Interface for input” must have the following functions:
⚫ Input a message from a topic subscribed in advance

⚫ Interpret the message in ROS protocol and
extract/marshal data for the application processing

⚫ Send the marshaled data to the application
processing

Also, “Interface for output” must have the following:
⚫ Receive result from the application processing

⚫ Generate a message in ROS protocol from the result
of the application processing

⚫ Publish the result to a topic advertised in advance

“Application processing” can be developed in various ways

for each application domain. Any HLS tools can be a generic

solution for computing tasks like scientific computations, and

complex applications including dynamic data structure.

Interface

for input

Application

Interface

for output

Communication

ROS compliant component

Topic Topic

Subscribe Publish

Figure 1 Structure of ROS-compliant FPGA component

Here, two interfaces are described, which (1) communicate

with other ROS node, (2) convert data between ROS protocol

message and application processing in FPGA, and (3)

send/receive data to/from application circuit. The three STEPs

are all done in FPGA.

STEP 1) Communication with another ROS node

The communication sequence to work as a publisher or a

subscriber in ROS system is show in Figure 2. In the

beginning, Publisher registers its topic information to Master.

This corresponds to advertiseTopic() of ROS-API call. After

this, Subscriber can query for the registered topic name by

subscribe() ROS-API call. Master works as a name service of

topic in ROS system like this. These query transactions are

done in HTTP/XML-RPC protocol [19]. After the query

transactions, message communication of application data

starts in TCPROS protocol. In our previous report [6], a

method of accelerating ROS message communication for

application data is proposed and exhibited by using FPGA

hardwired TCP/IP stack based on the architecture here. Figure

3 illustrates how the FPGA works as ROS node. The query

transactions in XML-RPC are done by software on

microprocessor since the transactions do not need high-speed

communication. Instead, the data communication in TCPROS

protocol is done in FPGA at high-performance.

STEP 2) Conversion of data between ROS and FPGA

Message in TCPROS protocol is almost raw binary data of

application. Therefore, the conversion of data is only

extraction and marshalling processing. Extraction process

includes interpretation of ROS message based on the

ROSTCP protocol, which has structured data fields with

variable length array. Marshalling process is necessary if the

data format used the circuit of the application processing is

different from ROS message.

STEP 3) Send/Receive data to/from application circuit

Communication between the Interface circuit and

Application processing has several choices. The simplest one

is direct connection using register, however, it has problem if

the coming data overwrites the register. Therefore, inserting

FIFO buffer is a realistic approach. Anyway, connection

between circuit modules are not tough work.

Publisher Master

Data transmission

Data transmission

Data transmission
・
・
・

Subscriber

Request Topic

Query
Reg.

Query trans.

(HTTP/XML-RPC)

Data comm.

(TCPROS)

Figure 2 Sequence of ROS message communication

Subscriber
SW

Input Publisher
SW

output

Subscriber
HW

Publisher
HW

Application

FPGA

Master

HW

SW

Pub Sub

HTTP/

XML-RPC

TCPROS

External

Publisher

External

Subscriber

Software

Hardware

ROS node

Figure 3 Co-operation of SW/HW to realize ROS node by

separating XML-RPC and TCPROS protocol

Figure 4 Design flow of ROS-compliant publish/subscribe FPGA

node

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

13
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

A design flow of ROS-compliant FPGA component with

HLS is described in Figure 4. The developer of ROS-

compliant FPGA component prepares (a) ROS message

definition and (b) ROS node configuration. The ROS message

definition (a) is a commonly used style in ROS system

development. It defines application specific custom message

type. Most of popular message types used in robotic software

are pre-defined and distributed by official ROS releases, for

example, sensor_msgs for various sensor data including

camera image and IMU. The ROS node config (b) is used to

indicate the publisher/subscriber node information such as

topic name and node name. A generator is used to specify

topic name, node name, network information to communicate

with other publishers/subscribers/master in the ROS system.

Application (c) is provided as C/C++ for HLS. After

generator, C/C++ descriptions of subscriber (d) and publisher

(e) are obtained. Finally, HLS tool synthesize circuits (f) for

FPGA to work as ROS node.

ROS2 [14], a newer version of ROS, employs DDS (Data

Distribution Service) [18] as a communication middleware. In

DDS system, the Master process is distributed into the

participant nodes. And the query transactions and data

communication are done in RTPS (Real-time Publish-

Subscribe) protocol [20] which uses broadcast/multicast using

UDP/IP instead of TCP/IP for realizing QoS (Quality of

Service) at better communication performance and reducing

processing overhead for low-power embedded processors.

There are many differential points between DDS and ROS,

however, the principle of the communication sequence is

similar. Therefore, it is expected to realize the same

mechanism in ROS2 by developing the query process, too.

In summary, ROS-compliant FPGA component is an

example of inter-FPGA component, which can be an

accelerator of various kind of processing. The communication

overhead can be minimized by hardware communication

(TCP/IP). In ROS2, the hardware communication would be

simpler because it uses UDP/IP.

IV. INTRA-FPGA COMPONENT TECHNOLOGY

This section describes the previously proposed FPGA

development framework [7][8] by integrating circuit modules

through Publish/Subscribe communication, which can be

categorized into the intra-FPGA component.

ROS is a successful example of software platform which

employs Publish/Subscribe model. The benefit of

Publish/Subscribe model is sparse connection between nodes,

since “topic” plays the role of buffer and nodes connected to

buffer can work more freely compared from a model which

directly connects nodes. A system based on Publish/Subscribe

communication model is constructed by multiple nodes.

Nodes communicate each other via topics, which are logical

queue. Each node communicates through a logic queue, which

is called “topic” Data of a specific “topic” is published by

“publisher”. And “subscriber” who would like to receive the

data of the topic subscribes to the topic. After subscription,

published data is distributed to subscribers. Adding new

nodes and/or removing nodes are easy because multiple nodes

publish or subscribe a topic.

The overview of the framework of intra-FPGA component

is shown in Figure 5. This framework consists of FIFO buffer

and switch in order to implement topic. In this framework,

Publisher publishes data by writing data into input-FIFO

buffer. On the other hand, Subscriber receives data by reading

data from output-FIFO buffer. The switch in the framework

reads data from input-FIFO buffer, which is mapped to a topic,

and writes the data into all the output-FIFO buffer. Thus, each

subscriber can receive data which was published by

publishers.

As a design example using the above framework, the image

resizing system was designed. Image resizing is used in the

image recognition processing with local feature amounts.

Figure 6 shows the Publish/Subscribe communication model

of an image resizing system. A process “Master” publishes

source images to processes “Worker”. Workers generate

resized images of different scales from each other.

Figure 7 shows the image resizing system, designed using

the proposed framework. This framework has 5 FIFO buffers

for a Publisher and 8 FIFO buffers for Subscribers. The

number written on the FIFO buffers in Figure 2 are the

numbers of topics. Topic 1 is a channel for source images.

Topic 2 to 5 are channels for resized images.

Figure 5 Concept of intra-FPGA component and communication

via Topic module

master

worker

1

worker

2

worker

3

worker

4

resized image1

resized image2

resized image 3

resized image 4

original

image

Figure 6 Example Publish/Subscribe model of multiple image

resizing with the intra-FPGA component

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

14
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

N

publisher

subscriber

switch

Pub/Sub framework

1

2

3

4

5

1

1

1

1

2

3

4

5

master

worker1

worker2

worker3

worker4

Figure 7 Example design with framework: block diagram

Figure 8 An example C++ code of the topic module for HLS

An evaluation was made on hardware resource utilization

and clock cycles. In this evaluation, the proposed framework

is implemented in XC7K325T-2FFG900C, is Xilinx FPGA,

on the Genesys 2 board (Digilent inc.). The switch was

implemented with C++ language using a development

environment Vivado HLS (Xilinx inc.). Figure 8 shows the

implementation of the topic module. In this sample code, two

publishers and three subscribers are connected as written at

the arguments. Using type hls stream<> in the function

argument, an interface for FIFO is generated.

Table 1 shows hardware resource utilization. The data dos

not include resources of FIFO buffers. As shown in the table,

the hardware resource is very small in the FPGA device. After

synthesis and P&R, the clock period is estimated. The

estimated clock period of the framework is 4.38ns, which is

capable of work at 200MHz.

In summary, an example of inner-FPGA component

technology is introduced. FPGA circuit design by component,

based on publish/subscribe communication has potential to

ease the FPGA development thanks to reusability of the

circuit modules.

Table 1 Hardware resource utilization

Name FF LUT

Expression 0 4

Multiplexer - 130

Resister 2 -

Total 2/407,600 134/203,800

V. PROPOSAL: INTER/INTRA-FPGA COMPONENT

FRAMEWORK

Based on the inter-FPGA and intra-FPGA component

technology which were described in the previous sections, a

novel development method of intelligent robots using FPGA

acceleration is proposed. As a result, a novel approach to

improve the reusability of FPGA IPs by introducing a

component-based design method is enabled. Several simple

case studies are described using the design methodology.

Figure 9 briefly shows the concept of the integration of

inter-FPGA component and intra-FPGA component. In this

example, a camera image is input to FPGA device from left

side. Then, the image processing, which is a “node”,

processes the image and some results output to a “topic”.

Here, the meaning of “node” and “topic” is similar to ROS

system. The results are received by two nodes. One is control

logic (down) and the other is image report (right). The control

logic receives the result from image processing and outputs

some control value to a topic, which is sent to motor actuating.

This is one feedback loop. This feedback loop is composed of

the intra-FPGA components and it would provide a very short

response time (micro seconds). At the same time, the image

report node sends the results of image processing node to a

cloud server in the right of the figure. The processing results

of the cloud server is sent back to a node “control from cloud”

and gives some value for motor actuation. The “control from

cloud” may need several milli-seconds latencies, however, the

cloud processing can utilize huge-database and scalable

computing/storage resources. Therefore, the combination of

edge and cloud computing is inevitable for realizing

intelligent robotics.

The sending to cloud server or receive from cloud server

need the functionality of inter-FPGA component technology.

Thus, the inter-FPGA and intra-FPGA component technology

works in a system which combines edge computing using

FPGA and communicating with a cloud server.

FPGA node

topic

image

processing

motor

actuating

control

logic

control

from cloud

image

report

Figure 9 The concept of component-based FPGA

development by inter/intra-FPGA component

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

15
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

sensor
value

Sensor Input

Image Input

Filter Proc.

PID
control

Stop
Decision

image

filtered
data

Inference
Proc.

Motor
Outputmotor

value

feat.
vec.

Feature Ext.

Selecting images
for learning

images for
learning

Learning

Inf. Result
learning
result

Weight
update

Requirement:
Max. Latency ~us
- from sensor in
- to motor out

Figure 10 An example system model of an intelligent robot vision system with service call (dashed lines), with a

latency requirement (sensor to motor, micro seconds)

sensor
value

Sensor Input

Image Input

Filter Proc.

PID
control

Stop
Decision

image

filtered
data

Inference
Proc.

Motor
Outputmotor

value

feat.
vec.

Feature Ext.

Selecting images
for learning

images for
learning

Learning

Inf. Result
learning
result

Weight
update

Requirement:
Max. Latency ~ms
- from image in
- to motor out

Figure 11 Another requirement of maximum latency from image to motor, milli second

sensor
value

Sensor Input

Image Input

Filter Proc.

PID
control

Stop
Decision

image

filtered
data

Inference
Proc.

Motor
Output

motor
value

feat.
vec.

Feature Ext.

Selecting images
for learning

images for
learning

Learning

Inference
result

learning
result

Weight
update

Rich EdgeCloud Server

Figure 12 An example deployment among edge and cloud server

sensor
value

Sensor Input

Image Input

Filter Proc.

PID
control

Stop
Decision

image

filtered
data

Inference
Proc.

Motor
Output

motor
value

feat.
vec. Feature Ext.

Selecting images
for learning

images for
learning

Learning

inference
resultlearning

result

Weight
update

Poor EdgeEdge ServerCloud Server

Figure 13 Another example deployment among edge, edge server and cloud server

Figure 10 shows a detailed example system model of an

intelligent robot vision system with a service call, with a

latency requirement. Since this system is more complex than

the previous system (Fig. 9), only necessary parts are

explained. From the right side, a sensor input comes in. Motor

output is in the system, too. Let’s assume the system is

implemented in software, basically. FPGA would be installed

only if it is necessary.

The requirement in this example is that the maximum

latency time is several micro-seconds from the sensor input to

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

16
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

the motor output. To achieve the requirement, the system

should take care that the total latencies of “Filter Proc.” and

“PID control” nodes are below the requirement.

Figure 11 illustrates another example of a latency

requirement using the same system. Here, the requirement is

that the maximum latency time is several milli-seconds from

the (camera) image input to the motor output. This indicates

visual feedback to the motor. To achieve the requirement, the

system should take care that the total latencies of “Feature

Extraction”, “Inference Processing” and “Stop Decision”. The

“Inference Processing” means Deep Neural Network (DNN)

processing does some classification processing and outputs its

result. This whole loop is intended that if the camera input

image is somewhat dangerous, the motor is stopped

emergently. Usually, DNN processing tends to take time.

Therefore, the system should take care of the latency of the

part is within the requirement. One may think using FPGA for

the part is effective. Then, an inter-FPGA component can be

used to accelerate the processing, since the inter-FPGA

component can communicate with other software in ROS

manner.

Deployment of a software component is another practical

issue of building an intelligent robot. An example of

deployment among edge and cloud server is shown in Figure

12. The system model is separately deployed into “Rich

Edge” and “Cloud server” in this example. The requirements

of Fig. 10 and Fig. 11 may be satisfied by this partitioning,

only if the edge computing performance is enough rich. Or,

some processing node should be offloaded into FPGA. The

partitioning process needs to take care of the communication

data amount and bandwidth among the target computing

resources (i.e. edge node and cloud server) for the deployment.

Figure 13 is another example deployment among edge,

edge server and cloud server. There three computing nodes in

the deployment target environment: “Poor Edge”, “Edge

Server” and “Cloud Server”. This is another typical case of

building small mobile robot with a poor microprocessor

which is low-power consumption. In such case, a server

computer is prepared at near-edge location since the cloud

server is too far to communicate with frequently. In this case,

the “Edge Server” may oversee DNN processing to satisfy the

latency requirement.

What we learned from this example is that using the system

model make the latency requirement clear, and what

processing needs to be speed up in the system. Furthermore, if

we can use code-generation from the model to an

implementation, we can modify the model and we can obtain

the implementation for the target computing environment

depending on the situation. Therefore, the complexity of the

development of intelligent robot can be reduced by using the

proposed inter-FPGA/intra-FPGA component technology.

VI. CONCLUSION

A component-based design method using inter/intra-FPGA

component technology is proposed. The inter/intra-FPGA

component technology is inspired by the ROS (Robot

Operating System) and the Publish/Subscribe communication

model, which improves the component reusability. It is also

expected to promote model-driven development as shown in

the example models of intelligent robots. The proposed design

flow is expected to contribute design productivity of

intelligent robots.

ACKNOWLEDGEMENT

The author would like to thank to the people who concerns

to this work in Utsunomiya University. Here list the names:

Kazushi Yamashina, Takuya Matsumoto, Hitomi Kimura,

Yuhei Sugata, Toki Kobayashi, Aoi Soya, Kenta Arai,

Kanemitsu Ootsu and Takashi Yokota.

The author also would like to thank to the committee

members of the SCOPE project for giving valuable

comments: Satoshi Funada (e-Trees.Japan), Masayuki Isobe

(FiVE Solutions, Inc.), Noriaki Ando (AIST), Keitaro Naruse

(University of Aizu), Yukinori Ishikawa (University of Aizu),

Midori Sugaya (Shibaura Institute of Technology), Kentaro

Sano (Tohoku University, RIKEN), Hakaru Tamukoh

(Kyushu Institute of Technology) and Hideki Takase (Kyoto

University).

REFERENCES

[1] Alexandre Cornu, Steven Derrien, Dominique Lavenier. “HLS

Tools for FPGA: faster development with better performances.”

Proceeding of the 7th International Symposium on Applied

Reconfigurable Computing, Feb 2011, Belfast, United Kingdom.

6578, pp.67-78, 2011.

[2] M. A. Oezkan, O. Reiche, F. Hannig and J. Teich, "A Highly

Efficient and Comprehensive Image Processing Library for

C++-based High-Level Synthesis," FSP 2017; Fourth

International Workshop on FPGAs for Software Programmers,

Ghent, Belgium, 2017, pp. 1-10.

[3] J. Choi, Ruo Long Lian, S. Brown and J. Anderson, "A unified

software approach to specify pipeline and spatial parallelism in

FPGA hardware," 2016 IEEE 27th International Conference on

Application-specific Systems, Architectures and Processors

(ASAP), London, 2016, pp. 75-82.

http://doi.org/10.1109/ASAP.2016.7760775

[4] Takeshi Ohkawa, Kazushi Yamashina, Hitomi Kimura,

Kanemitsu Ootsu, Takashi Yokota, "FPGA Component

Technology for Easy Integration of FPGA into Robot Systems,"

IEICE Transactions on Information and Systems, Vol.E101-D,

No.2, pp.363-375, Feb. 2018.

http://doi.org/10.1587/transinf.2017RCP0011

[5] Takeshi Ohkawa, Kazushi Yamashina, Takuya Matsumoto,

Kanemitsu Ootsu, Takashi Yokota, "Automatic Generation Tool

of FPGA Components for Robots,", IEICE transactions on

Information and Systems, Vol.E102-D, No. 5, pp.1012-1019,

May 2019.

http://doi.org/10.1587/transinf.2018RCP0004

[6] Takeshi Ohkawa, Yuhei Sugata, Harumi Watanabe, Nobuhiko

Ogura, Kanemitsu Ootsu, Takashi Yokota, “High Level

Synthesis of ROS Protocol Interpretation and Communication

Circuit for FPGA,” 2nd Workshop of Robot Software

Engineering 2019 (RoSE2019) held with ICSE2019

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

17
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

[7] Kenta Arai, Takeshi Ohkawa, Kanemitsu Ootsu and Takashi

Yokota, “Proposal of Publish/Subscribe Communication

Framework for Circuit Components on FPGA,” In proc. of Asia

Pacific Conference on Robot IoT System Development and

Platform 2018 (APRIS2018), an extended abstract of ESS2018

(Embedded System Symposium 2018), 2018.

[8] Kenta Arai, Takeshi Ohkawa, Kanemitsu Ootsu and Takashi

Yokota, “Component-based FPGA development of intelligent

image processing for industrial IoT devices,” In proc. of 1st

International Workshop on Embedded Software for Industrial

IoT 2018 (ESIIT2018) held with DATE18

[9] Takeshi Ohkawa, Daichi Uetake, Takashi Yokota, Kanemitsu

Ootsu, and Takanobu Baba, "Reconfigurable and Hardwired

ORB Engine on FPGA by Java-to-HDL Synthesizer for

Realtime Application," Proc. 4th International Symposium on

Highly Efficient Accelerators and Reconfigurable Technologies

(HEART 2013), pp.45-50, 2013.

https://doi.org/10.1145/2641361.2641374

[10] Takeshi Ohkawa, Takashi Yokota, Kanemitsu Ootsu, "A

Prototyping System for Hardware Distributed Objects with

Diversity of Programming Languages --- Design and

Preliminary Evaluation," Proc. 2013 International Conference

on Field Programmable Technology (ICFPT 13), pp.474-477,

(2013.12)

https://doi.org/10.1109/FPT.2013.6718418

[11] H. Tamukoh and M. Sekine, “Design of Networked hw/sw

Complex System using Hardware Object Model and Its

Application,” Proc. of 39th Annual Conference of the IEEE

Industrial Electronics Society, pp. 2250-2255, 2013.

[12] Takeshi Ohkawa, Daichi Uetake, Kanemitsu Ootsu, Takashi

Yokota, "Component-based System Design of FPGA and

Software for Intelligent Real-time Systems," Proc. 2014

International Workshop on Smart Info-Media Systems in Asia

(SISA 2014), Ho Chi Minh City, Vietnam, pp.64-69, (2014.10)

https://www.ieice-sisa.org/?page_id=402#tSS1-04

[13] Yutaro Ishida, Takashi Morie, Hakaru Tamukoh, “A Hardware

Accelerated Robot Middleware Package for Intelligent

Processing on Robots,” 2018 IEEE International Symposium on

Circuits and Systems (ISCAS), pp.1-8, 2018.

http://doi.org/10.1109/ISCAS.2018.8351722

[14] Yuya Maruyama, Shinpei Kato, and Takuya Azumi.“Exploring

the performance of ROS2.” In Proceedings of the 13th

International Conference on Embedded Software (EMSOFT '16).

ACM, 10 pages. 2016,

http://doi.org/10.1145/2968478.2968502

[15] Noriaki Ando, Takashi Suehiro, Kosei Kitagaki, Tetsuo Kotoku

and Woo-Keun Yoon 2005, RT-middleware: distributed

component middleware for RT (robot technology), In Proc. of

IEEE/RSJ International Conference on Intelligent Robots and

Systems (2-6 Aug. 2005), IROS 2005, 3933 - 3938. DOI=

http://dx.doi.org/10.1109/IROS.2005.1545521

[16] G. Pardo-Castellote, "OMG Data-Distribution Service:

architectural overview," 23rd International Conference on

Distributed Computing Systems Workshops, 2003. Proceedings.,

2003, pp. 200-206.

http://doi.org/10.1109/ICDCSW.2003.1203555

[17] https://www.omg.org/spec/CORBA/

[18] https://www.omg.org/spec/DDS/

[19] http://wiki.ros.org/xmlrpcpp

[20] https://www.omg.org/spec/DDSI-RTPS/

[21] http://wiki.ros.org/

2019 International Workshop on Smart Info-Media Systems in Asia (SISA 2019),Sep.4-6,2019

18
Copyright(c)2019 IEICE.Permission request for reproduction:Service Department,
IEICE Headquarters Office, E-mail: service@ieice.org. IEICE Provisions on
Copyright: https://www.ieice.org/eng/copyright/.

 SS1-3

