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Abstract—This paper proposes a new source reconstruction 
method (SRM) based on deep learning. The conventional SRM 
usually requires oversampled measurements data to ensure 
higher accuracy. Thus, conventional SRM numerical system is 
usually highly singular. A deep convolutional neural network 
(ConvNet) is proposed to reconstruct the equivalent sources of 
the target to overcome difficulty. The deep ConvNet allows us to 
employ less data samples. Besides, the ill-conditioned numerical 
system can be effectively avoided. Numerical examples are 
presented to demonstrate the feasibility and accuracy of the 
proposed method. Its performance is also compared with the 
traditional neural network and interpolation method.  
Moreover, we further expand the proposed method to measure 
the permittivity of dielectric scatterers. 

Keywords—source reconstruction method, convolutional 
neural network, machine learning 

I. INTRODUCTION 

The source reconstruction method (SRM) can employ 
integral equations to construct equivalent source distributions 
of target objects from the near field (NF) or far field (FF) 
measurements [1].  By using the scattered field in the 
observation domain, the distribution of sources on an object 
can be approximated. The reconstructed sources can be 
utilized for source error test, hot-spot identification, NF to FF 
transformations [1-2], etc. In the past few decades, 
reconstruction algorithms have been proposed, such as Born 
approximation method [3], Bayesian probability method [4], 
compressive sensing [5], and other deterministic algorithms 
[6]. However, all these conventional approaches encounter 
solving singular numerical systems, which makes SRM a 
complicated computational challenge [1-2]. 

Employing machine learning (ML) in advanced 
computational electromagnetics and relevant applications 
have been initiated long time ago [7-8].  Due to recent 
blooming learning technologies, the convolutional neural 
network (ConvNet) [9] has become one of the most important 
new methods in deep learning applications. For example, 
ConvNet has been widely used in imaging processes [9]. 

In this paper, we propose to employ a deep ConvNet for 
the source reconstruction process. The advantages of the 
proposed method are: (1) the proposed deep ConvNet model 
allows calculation using much less field samples than the 
conventional SRM; (2) the proposed method avoids handling 
a singular numerical system because the inverse solving 
process of conventional SRM is avoided; (3) the proposed 
deep ConvNet approach can make far field information to do 

reconstruction; (4) the proposed method has satisfactory 
accuracy and superior performance over traditional neural 
networks and interpolation methods [10-11]. 

Compared to the traditional neural networks (NNs) and 
interpolation method [10-11], ConvNet can more efficiently 
map the relations between inputs and outputs mainly by 
convolutional layer and activation layer [12]. Thus, unlike 
traditional NNs, ConvNet does not need very large number of 
neural units to handle problems [12]. The specific comparison 
between different methods is provided in Section III. 

The paper is organized as follows: In Section II, the source 
reconstruction formulation is briefly reviewed, followed by a 
description of the proposed ConvNet structure. Then, the 
proposed ConvNet method for solving source reconstruction 
problems is proposed. In Section III, numerical examples are 
provided to present the validity and precision of the proposed 
method, which are also compared with the results obtained by 
interpolation method and backpropagation neural network. 
Finally, the conclusion is shown in Section IV. 

II. FORMULATON AND THEORY 

A. Problem Formulation 

 
Fig. 1.  Schematic of Scattering Scenario 
 

The representative 2D equivalent current density 
reconstruction, as shown in Fig. 1, is used to demonstrate the 
procedures of our methodology. In Fig. 1, Dobj is a dielectric 
area, denoting the domain of interest.  It is divided into 
n=1,2,…N patches. The transverse magnetic (TM) incidence 
plane wave is denoted as 𝑬௜௡ . The scattered field 𝑬௦  in z 
direction can be represented by z direction current density as:  

𝐸௦(𝒓) = −𝑗𝜔𝜇଴ ∫ 𝑔(𝒓, 𝒓′)𝐽௦(𝒓′)𝑑𝒓′                  (1) 

where 𝑔(𝒓, 𝒓′) is the scalar Green’s function. For TM wave, 

it can be defined as 𝑔(𝒓, 𝒓′) = −
௝

ସ
𝐻଴

(ଶ)
(𝑘଴|𝒓 − 𝒓′|) . 𝐻଴

(ଶ) 
stands for the second-kind Hankel function of zeroth order. 
𝒓 = (𝑥, 𝑦) and 𝒓′ = (𝑥′, 𝑦′) are the field and source points, 
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respectively. 𝑱௦ is the equivalent current density on the target 
object Dobj. 

According to the Lippmann–Schwinger equation [13], the 
relationship between the incident electrical field 𝑬௜௡  and 
equivalent current density distribution 𝑱௦ on Dobj is presented 
as: 

𝐸௜௡(𝒓) − 𝑗𝜔𝜇଴ ∫ 𝑔(𝒓, 𝒓′)𝐽௦(𝒓′)𝑑𝑟′ =
௃ೞ(𝒓)

௝ఠ బ(ఌೝିଵ)
         (2) 

where 𝜀0 and 𝜇
0
 are the vacuum permittivity and permeability, 

and 𝜀𝑟 is the relative permittivity of Dobj. 

It has been widely acknowledged that the property of 
object can be characterized by its equivalent current density 
distribution 𝑱௦ . For different incident angles 𝛽௟  of 
𝑬௜௡ ( 𝑙 =1….L) and different receivers in the far field at 
measurement angles 𝜑௠ (𝑚=1…M), the relationship between 
the scattered field 𝑬௦ and equivalent current density 𝑱௦ is: 

𝐸௦(𝜑௠, 𝛽௟) = −𝑗𝜔𝜇଴ ∑ 𝑔(𝜑௠ , 𝒓௡
ᇱ )𝐽௦,௡

ఉ೗ே
௡ୀଵ 𝐴௡           (3) 

where 𝐴௡ is the equivalent area of nth divided Dobj fragment 
and 𝐽௦,௡

ఉ೗  is the equivalent current density on the nth piece with 
the incident field angle 𝛽௟. 

The aim of conventional reconstruction methods is 
utilizing  𝐸௦(𝜑௠, 𝛽௟)  to obtain 𝐽௦,௡

ఉ೗ . However, in the 
conventional process, numerous 𝜑௠ has to be used to retrieve 
𝐽௦,௡

ఉ೗ , which could be ill-conditioned [1-2]. Hence, 
Conventional SRM suffer from the expensive calculation cost 
and relatively low accuracy. 

B. Integration of ConvNet to Source Reconstruction 

A deep ConvNet is proposed to replace the conventional 
SRM. The architecture of the proposed ConvNet is shown in 
Fig. 2. Thus, we can rewrite the source reconstruction process 
in a simplified form as (4): 

൝
𝐘 = 𝐹(𝐗; 𝚯)

𝐗 = 𝐄௦

𝐘 = 𝐉௦

                                (4) 

where for each 𝛽௟ , 𝐄𝐬 = [𝐸௦(𝜑ଵ, 𝛽௟), … , 𝐸௦(𝜑ெ, 𝛽௟)]  and 

𝐉𝐬 = ቂ𝐽௦ଵ
ఉ೗, … 𝐽௦,௡

ఉ೗ , … 𝐽௦ே
ఉ೗ ቃ . The mapping 𝐹  represents the 

equivalent source reconstruction process based on the 
ConvNet. 𝚯 is the parameters of the ConvNet (weights and 
biases). 

The modeling procedure by using our deep ConvNet is as 
follows: (1) Training data collection: the known 𝐉௦  under 
different incident waves and its resultant 𝐄௦  are collected 
through direct forward computations to form training data set. 
(2) Training ConvNet: we use 𝐄௦  as the input of proposed 
ConvNet (real and imaginary part) while 𝐉௦  (real and 
imaginary part) act as the output. we have L groups of input 
and output of proposed ConvNet. Based on these data, we start 
to train ConvNet 𝐹; (3) Reconstructing source: based on the 
resultant ConvNet, we can then reconstruct 𝐉௦ illuminated by 
new incident waves. Because of the advantages of ConvNet, 
the proposed method can reconstruct equivalent current even 
with less complexity (smaller M) and good accuracy. The 

regularization technique is adopted to reduce overfitting and 
decrease the complex of model. Then, our trained deep 
ConvNet model can be used to realize source reconstruction 
for unknown situation. The performance of the ConvNet is 
discussed in the following Sections. 

 
Fig. 2.  ConvNet architecture for the source reconstruction 
 

In the internal architecture of proposed ConvNet, the 
convolutional layer and activation layer unit operates to 
capture features of input. Convolutional layer number, kernel 
number f, its size K, and the stride for kernel are shown in 
Table I. Then, this convolutional layer and activation layer 
unit feed into a final fully-connected layer, which is the 
prediction of the reconstructed source. This final output is also 
used to compute the mean-squared error between the true label 
and the predicted label, referred to as the loss. 

The proposed method is benchmarked in Matlab 2018b 
with Deep Learning Toolbox [14]. The mean-squared error 
loss function is optimized by the stochastic gradient descent. 
The learning rate, chosen as 0.01, is the hyper-parameter in 
our model. We can control training error by declining the 
learning rate. The training is done by full batch. L2 
regularization is applied to prevent over-fitting and improve 
prediction accuracy [15]. 

TABLE I 
CONVNET ARCHITECTURE 

Type 
Filter 

Number 
Filter 
Size 

Stride Input Size Output Size 

Convolution 10 22 2 M21 (M/2)110 
ReLu    (M/2)110 (M/2)110 

Convolution 20 21 1 (M/2)110 (M/2)120 
ReLu    (M/2)120 (M/2)120 

Convolution 30 21 1 (M/2)120 (M/2)130 
ReLu    (M/2)130 (M/2)130 
Fully-

connected 
   (M/2)130 N2 

Regression      

 

III. NUMERICAL RESULTS 

Several numerical examples and application scenarios are 
used to demonstrate the proposed source reconstruction 
method. 

A. Reconstruction for an Arbitrary Single Object 

A 2D Z-shaped dielectric object is firstly used to 
demonstrate the performance of the proposed ConvNet 
method, as shown in Fig. 3. 
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(a)                                                       (b) 

 
(c)                                                     (d) 

 
     (e) 

Fig. 3.  Performance of different SRM on Z-shaped object for 𝛽=270 degree. 
(a) Known accurate numerical current distribution. (b) Current distribution 
calculated from the ConvNet prediction. (c) Current distribution calculated 
from the nearest interpolation method. (d) Current distribution calculated 
from conventional BPNN. (e) Relative error Comparison between ConvNet, 
BPNN, the interpolation on different incident angles. 
 

In Fig. 3(a-d), the wavelength λ of incident TMz wave is 1 
meter, the dielectric permittivity of object 𝜀௥  is 8, and its 
geometric parameters are shown in Fig. 3(a). The source 
current density 𝐉௦ is assumed to be distributed on an artificial 
grid 24×24, (N=576). The 𝐄௦ are collected along 10 equally 
spaced directions (M=10) as the input of the training data. 
Only 6 equally spaced incident directions (𝛽 = 0o, 60o, …., 
300o) for 𝑬௜௡ are used to stimulate the object to get the training 
data. The nearest interpolation method is used for the 
comparison. We also use a traditional Back Propagation 
Neural Network (BPNN) to reconstruct the source [10], of 
which the training data are also 𝐄௦ as input and 𝐉௦ as output. 
The structure of BPNN has three layers: input, hidden-layer 
and output layer. There are 20 hidden-layer units of hyperbolic 
tangent basis function. 

Then, six new incident angles (𝛽 =30o, 90o…330o) are 
utilized to obtain new induced current and scattered field 𝐉௦ 
and 𝐄௦ from the Z-shaped object. 𝐄௦ is used as the input of the 
trained ConvNet to reconstruct the equivalent source. The 
resultant source is further compared with 𝐉௦  to verify its 
accuracy. Fig. 3 (b-d) present the reconstructed source for the 
incident angle 𝛽 =  270o case only. It is evident that the 
ConvNet has the highest precision while the traditional BPNN 
provides the worst result. 

The performance of all six new incident cases are given in 
Fig. 3(e). The accuracy relative to the original 𝐉௦ is computed 
by the relative error in equation (5): 

𝑒 =
ฮหJS,SRMหିหJS,accหฮ

ฮJS,accฮ
                                 (5) 

where JS,SRM  is the current density computed from source 
reconstruction processes and JS,acc  is the original current 
density distribution computed directly from the incident wave. 

We can see that the propose ConvNet always has the 
smaller error (below 0.2) than that of interpolation method 
(about 0.4), while BPNN has the worst performance for all 
testing situations. 

B. Reconstruction for Multi-Objects 

The performance of the proposed ConvNet for multi-
objects in Dobj is presented in this section. With all similar 
setups including those for comparisons, only the Z-shaped 
object is replaced by two different squares. 

  
(a)                                                    (b) 

     
(c)                                                    (d) 

 
(e) 

Fig. 4.  Performance of different SRM on multi-objects for 𝛽=270 degree. 
(a) Known accurate numerical current distribution. (b) Current distribution 
calculated from the ConvNet prediction. (c) Current distribution calculated 
from the nearest interpolation method. (d) Current distribution calculated 
from conventional BPNN. (e) Relative error Comparison between ConvNet, 
BPNN, the interpolation on different incident angles. 
 

The results are the same as that in Section III A. Fig.4(b-
d) shows the predicted result from different methods.  It is 
evident that the ConvNet has the highest accuracy while the 
traditional BPNN nearly fails in reconstructing the equivalent 
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source or providing meaningful information. From Fig.4(e), 
we can also see that the proposed ConvNet always has the 
smaller error (below 0.2) than other two methods. 

C. New Permittivity Measurement Approach 

The proposed method can be a new methodology for the 
permittivity measurement. Conventional method requires 
specific reflection or transmission measurements based on 
special test fixtures and equipments [16]. By using our 
proposed deep ConvNet model, the permittivity measurement 
can become a much flexible scattered field data acquisition 
process. The proposed new process is as follows: (1) 
Collecting measurement model training data: we use TMz 
incident wave in a certain direction to illuminate the 
homogeneous dielectric object with a certain shape. The 
scattered field 𝐄௦  are collected at a fixed range and several 
angles.  𝐄௦ will be used as the training input and the object's 
permittivity 𝜀௥  will be used as the training output. We then 
change 𝜀௥  but keep the same incident field to get another 
group {𝐄௦, 𝜀௥} as another set of training data. (2) Train the 
ConvNet model for the permittivity measurement: by using 
the training data collected in step one, a new ConvNet is 
trained to predict the permittivity based on the scattered field 
𝐄௦ ; (3) Permittivity measurement: when an unknown 
dielectric is under test, it will be made into the same shape 
used for training objects first.  Then it is illuminated by the 
incident wave same to that for the training in Step 1. Then the 
scattered field 𝐄௦  is measured at the mentioned fixed range 
and given angles in Step 1. By inputting the measured 𝐄௦ to 
the trained ConvNet, the unknown permittivity 𝜀௥  can be 
predicted by the model. the newly proposed approach is 
shown in Fig. 5. We here use the Z-shaped in Section III A as 
target object Dobj. The dielectrics with the permittivity (1.5, 2, 
2.5, …, 6.5) are used to obtain the training data. 

 
(a)                                                             (b) 

Fig. 5. Permittivity measurement results from ConvNet. Circles and squires 
are for the testing cases that have the permittivities different from the training 
cases. (a) Comparison between real permittivity and ConvNet prediction 
results. (b) Error of ConvNet prediction results 
 

From Fig 5, we can see that the ConvNet can very 
accurately predict the permittivity, and the error of the studied 
results can be controlled below 2%. 

IV. CONCLUSION 

In this paper, we propose a new source reconstruction 
method using the deep ConvNet. The scattered fields resulting 
from incident waves of different incident angles are used as 
the input training data to the ConvNet while the induced 
current distributions are used as the output data.  After the 
training, proposed ConvNet serves as the SRM engine to 
reconstruct the equivalent sources efficiently.  Because of the 

merit of ConvNet, the newly proposed approach achieves 
better performance on the source reconstruction problem. The 
ConvNet model is further extended to propose a new 
permittivity measurement method. Several numerical 
examples are used to demonstrate the feasibility and accuracy 
of proposed ConvNet. We also compare the proposed 
ConvNet model with traditional neural networks and 
interpolation method to show the validity and advantages of 
our model. Our work offers a new way to leverage machine 
learning approaches for source reconstruction applications. 
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