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Abstract— In this paper, a predictor-corrector algorithm for 

the fast stochastic analysis of multi-walled carbon nanotube 

(MWCNT) interconnect networks is proposed. This algorithm 

begins by developing a polynomial chaos (PC) predictor 

metamodel to capture the coarse features in the stochastic 

network response. In order to expedite the construction of the 

predictor metamodel, the compact but approximate equivalent 

single conductor (ESC) model of the network is used. Thereafter, 

the finer features of the stochastic network response are captured 

using a corrector metamodel. This corrector metamodel is 

formulated using a very sparse set of the rigorous and expensive 

multi-conductor circuit (MCC) model. The combination of the 

predictor and corrector metamodels is found to be far more 

efficient than conventional PC metamodels constructed using the 

MCC model only. In this paper, the scaling of the efficiency 

factor with respect to the number of shells in the MWCNT 

network is quantified. 
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I.  INTRODUCTION 

Multi-walled carbon nanotubes (MWCNTs) are emerging 
as potential replacements for copper in on-chip high-speed 
interconnect networks due to their superior electrical and 
thermal properties [1]-[3]. However, it is pointed out that the 
performance of MWCNT networks is very sensitive to 
manufacturing and fabrication process variations. Thus, it is 
imperative that modern circuit simulators be able to reliably 
quantify the impact of manufacturing and fabrication process 
variations on the performance of MWCNT interconnect 
networks.  

Recently, polynomial chaos (PC) approaches have become 
standard for quantifying the stochastic effects of process 
variations in high-speed interconnects [4], [5]. These 
approaches have also been extended to MWCNT networks [6], 
[7]. The basic idea of any PC approach is to model all process 
variations as random variables with well-known probability 
density functions (PDFs). Thereafter, the impact of these input 
random variables on the response of MWCNT networks is 
mathematically represented as a linear combination of 
polynomial basis functions. In particular, these basis functions 
are, by construction, orthonormal to the joint PDF of the input 

random variables [8]. Thus, these bases form a set of complete 
orthonormal bases in the Hilbert space determined by the 
support of the joint PDF. The coefficients of the bases form the 
new unknowns of the network. These unknowns are 
determined using repeated deterministic SPICE simulations of 
the MWCNT network at predefined points in the 
multidimensional random space [7]. Once the PC coefficients 
have been evaluated, the combination of the coefficients and 
bases form a closed-form metamodel of the network response. 
This metamodel can now be probed repeatedly to extract the 
statistics of the response.        

The key benefit of PC approaches is their rapid 
convergence to correct results as the order of the basis 
functions increases even for massively large number of random 
variables (or dimensions) [4]-[6]. However, this benefit is 
counterbalanced by the fact that the number of deterministic 
SPICE simulations of the MWCNT network required to 
evaluate the PC coefficients scales in a near-exponential 
manner with respect to the number of random dimensions [7]. 
In other words, considering the full set of random dimensions 
present in a MWCNT network can quickly become 
computationally intractable. In [6], the approximate but 
compact equivalent single conductor (ESC) model of the 
network was harnessed to reduce the burden of each SPICE 
simulation. However, no approach to compensate for the loss 
in accuracy caused by the approximate ESC model was 
explored.    

In this paper, a new algorithm to address the poor 
scalability of PC metamodels specifically for MWCNT 
networks is presented. This algorithm begins by constructing a 
predictor PC metamodel of the MWCNT network responses. 
The main purpose of the predictor is to capture the coarse 
features of the stochastic network responses. In particular, the 
massive number of deterministic SPICE simulations required 
to determine the PC coefficients of the predictor metamodel is 
mitigated by using the equivalent single conductor (ESC) 
model of the network [9]. As expected, the ESC model 
introduces non-negligible errors in the PC coefficients. Next, 
these non-negligible errors in the predictor coefficients is 
corrected by adding a corrector function. The corrector 
function is determined using a very sparse set of the rigorous 
multiconductor circuit (MCC) model of the network [10]. In 
other words, the rigor of the MCC model enriches the accuracy 
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of the predictor metamodel to an acceptable level. Thus, the 
total number of deterministic SPICE simulations of the 
MWCNT network required is the sum of a large number of 
compact ESC model simulations (for constructing the 
predictor) and a small number of the rigorous MCC model 
simulations (for constructing the corrector). The CPU cost of 
this sum of deterministic network simulations is considerably 
smaller than that incurred when directly constructing a 
conventional PC metamodel using MCC simulations alone. In 
this paper, the efficiency achieved by the proposed predictor-
corrector algorithm over conventional PC is validated using a 
numerical example. In addition, complexity analysis 
quantifying how the achieved efficiency factor scales with 
respect to the number of conducting shells in the MWCNT 
network is also presented. The results of this scalability 
analysis is also validated using the same numerical example.   

II. CONVENTIONAL PC FOR MWCNT NETWORKS AND ITS 

LIMITATION 

Consider a typical single conductor MWCNT network 
structure as shown in Fig. 1(a). The resistance Rin and capacitor 
Cin together represent the simple RC equivalent of the 
interconnect driver while the capacitor Cout represents the gate 
capacitance of the transistor load. Each shell of the conductor is 
modeled using lumped resistive, inductive, conductive, and 
capacitive (RLGC) SPICE circuit elements as shown in Fig. 
1(b) [3], [10]. Note that in Fig. 1(b), the shell-to-shell coupling 
is due to the non-zero tunneling conductance and electrostatic 
capacitance. Overall, Fig. 1(b) represents the rigorous 
multiconductor circuit (MCC) model of the entire MWCNT 
network. Let the impact of manufacturing and fabrication 
process variations in the structure of Fig. 1(a) be modeled as N 
mutually uncorrelated random variables λ = [λ1, λ2,…, λN] 
located within the multidimensional support Ω. The impact of 
the random variables on the MCC model response is 
characterized by the stochastic modified nodal analysis (S-
MNA) equations as  

)(
),(

)(),()( t
dt

td
t B

λX
λCλXλG              (1) 

 
where G and C matrices contain the stamp of all the RLGC 
lumped circuit elements, X is the vector of stochastic 
voltage/current responses, and B represents the vector of 
independent voltage and current sources.  

The main goal of stochastic analysis is to determine the 
statistics of the network responses X(t,λ). One highly popular 
and well-known approach for stochastic analysis is using 

polynomial chaos (PC) metamodels [8]. Typically, PC 
metamodels express the stochastic network responses X(t,λ) as 
linear combinations of orthonormal basis functions of the 
random variables of λ as [6], [7] 

 






P

0k

kk tt )()(),( λXλX                         (2) 

 
where ϕk(λ) is the kth N-dimensional polynomial basis, Xk(t) is 
the corresponding coefficient, and the number of terms in the 
expansion of (2) is truncated to P+1 = (N+m)!/(N!m!), m 
being the maximum order of the expansion of (2). The 
unknown PC coefficients of (2) are determined using K = 
2(P+1) deterministic SPICE simulations of the MCC model of 
Fig. 1(b) performed at predetermined points located in the 
support Ω [7]. Once the coefficients are determined, the PC 
metamodel of (2) serves as a closed-form surrogate model of 
the network responses X(t,λ). This surrogate model can now 
be probed repeatedly and far more efficiently than the original 
MCC model of (1) to estimate the statistical quantities of the 
network responses X(t,λ). 

The main computational expense of constructing the PC 
metamodel of (2) goes towards performing the deterministic 
SPICE simulations required to evaluate the coefficients. In 
fact, the number of SPICE simulations required scales rapidly 
with the number of random dimensions N as O(K) = O(Nm) 
[7]. This means that even for a modest number of random 
dimensions N and order m, the required number of SPICE 
simulations can be too large to be realistically possible. This 
issue of poor scalability is further compounded by the fact that 
as the number of shells in each MWCNT conductor increases, 
the time cost for even a solitary SPICE simulation using the 
MCC model of Fig. 1(b) increases rapidly. In the work of [6], 
this issue of poor scalability was mitigated by using the 
approximate but more compact equivalent single conductor 
(ESC) model instead of the rigorous MCC model of Fig. 1(b) 
in each SPICE simulation. However, no methodology for 
compensate for the reduced accuracy of the approximate ESC 
model was provided. To address this challenge, a new 
predictor-corrector algorithm is presented in this paper.  

III. PROPOSED PREDICTOR-CORRECTOR ALGORITHM 

A. Constructing the Predictor Metamodel 

The proposed predictor-corrector algorithm begins by 
constructing a predictor PC metamodel of the MWCNT 
network responses as  
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                              (a)                                                                                                                          (b) 

Fig. 1: A MWCNT interconnect network. (a) The MWCNT physical network structure. (b) Multiconductor circuit (MCC) model of the network. 
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where Xk

(p)(t) are the predictor coefficients. The basic purpose 
of the predictor metamodel of (3) is to capture the coarse 
features of the stochastic network responses in an efficient 
manner. To that end, the coefficients of (3) are evaluated using 
deterministic SPICE simulations based on an ESC model 
rendering of the MWCNT network [9], [10]. The rationale 
behind using the ESC model is that it is a highly compact 
model unlike the rigorous MCC model. Therefore, although a 
large K = 2(P+1) number of discrete SPICE simulations are 
required to evaluate all the coefficients of (3), each simulation 
can be performed substantially faster.  

B. Constructing the Corrector Function 

 It is noted that the ESC model used to evaluate the PC 
coefficients of (3) is based on the assumption that the potential 
at all shells of a conductor at equal longitudinal distance from 
an end is the same [9]. This equipotential assumption neglects 
the impact of the intershell tunneling conductance and 
electrostatic capacitance and hence, is an approximation of the 
underlying physics governing the MWCNT network [10]. In 
other words, the ESC model is not sufficiently accurate to 
capture the finer stochastic features of the network responses. 
In order to restore this lost accuracy of the predictor, a 
corrector (or error) function is described as  

),(),(),( λXλXλF ttt pred                      (4) 
 
Given that the predictor metamodel is still a reasonably coarse 
approximation of the actual stochastic network responses, the 
formulation of (4) indicates that the norm of the variance of 
the corrector function is significantly lower than that of the 
responses themselves. Therefore, it is possible to model the 
corrector function as a low-order PC metamodel as  
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where Xk

(c)(t) represents the kth corrector coefficient. In 
particular, the order of expansion of (5) is r where r < m. As a 
result, the number of coefficients in (5) is Q+1 where Q+1 << 
P+1. The coefficients of (5) are evaluated using 2(Q+1) 
discrete SPICE simulations of the rigorous MCC model of 
Fig. 1(b).  

C. Recovering the High-Fidelity PC Metamodel 

Once the predictor and corrector have been constructed, the 
high-fidelity PC metamodel of the MWCNT response can be 
recovered using (5) as  
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It is noted from (6) that the addition of the Q+1 corrector 
coefficients restores the accuracy of the predictor metamodel to 
an acceptable level. In effect, the combination of the predictor 

and corrector captures both the coarse and fine stochastic 
features of the network response.   

D. Computational Complexity Analysis  

 The main computational cost of the proposed predictor-
corrector algorithm is the time cost required for the 2(P+1) and 
2(Q+1) SPICE simulations of the network using the ESC and 
MCC models respectively. Of these, the time cost for each ESC 
model simulation is assumed to be a fraction q of the 
corresponding time cost for each MCC model simulation where 
q << 1. Thus, the equivalent number of MCC model 
simulations required for the proposed predictor-corrector 
algorithm is   
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On the other hand, the conventional PC metamodel of (2) 
requires 2(P+1) number of MCC model simulations to evaluate 
all the coefficients. Hence, the efficiency of the predictor-
corrector algorithm over conventional PC is quantified as    
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It can be concluded from (8) that as the number of shells 
inside each MWCNT conductor increases, the ESC model 
becomes even more efficient than the MCC model. In effect, 
this means that the value of the reduction factor k decreases 
with increase in the shell count. For substantially large number 
of shells, the value of k will be small enough such that the 
time cost of the ESC model simulations will be dwarfed by the 
time cost of the MCC model simulations. This will translate to 
the speedup factor of (8) saturating to the value of  
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As a result, the best case speedup provided by the predictor-
corrector algorithm is P+1/Q+1. 

IV. NUMERICAL EXAMPLE AND VAIDATION 

In order to validate the accuracy and efficiency of the 
proposed predictor-corrector algorithm, the MWCNT network 
of Fig. 1 is considered. The number of shells are progressively 

TABLE I 

RANDOM PARAMETERS WITH NORMAL DISTRIBUTION FOR NUMERICAL 

EXAMPLE OF FIG. 1 

No. Random Parameters Mean 

Relative 

Standard 

Deviation 

1 Din (Inner diameter of CNT) 2.28 nm 

20 % 

2 d (Inter-shell distance) 0.34 nm 

3 σ (Tunneling conductivity) 20 

4 Cin (Driver capacitance) 0.14 fF 

5 Cout (Load capacitance) 0.049 fF 

6 H (Height of dielectric) 50 nm 

7 εr (Dielectric constant) 2 

8 Rm (Contact resistance) 1000 Ω 

9 l (length of conductor) 100 µm 5 % 
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increased from n = 30 to n = 50 in steps of 10. The uncertainty 
in the network is represented using N = 9 dimensions 
described in Table I. The network is excited by a voltage 
source with a saturated ramp waveform of rise/fall time Tr = 
0.1 ps and an amplitude of 1 V. Two different PC based 
approaches are used for the stochastic analysis of the transient 
responses of the network – the proposed predictor-corrector 
algorithm of Section III and the conventional PC metamodel 
of (2). A maximum degree of m = 4 is used for both the 
predictor and the conventional PC metamodel. For the 
corrector, a PC metamodel of order r = 3 is sufficient.  

In order to demonstrate the accuracy of the predictor-
corrector algorithm, the statistics of the network response at 
the far end of the network is obtained using the above three 
methods. The results obtained from the predictor-corrector 
algorithm are found to exhibit good agreement with the 
conventional PC results as shown in Fig. 3(a). For a more 
thorough accuracy analysis, the PDF of the far-end transient 
response is extracted at the time point when the standard 
deviation of the same response is maximum (i.e., at t = 0.071 
ns). The PDF obtained from the predictor-corrector algorithm 
also exhibits good agreement with that obtained using the 
conventional PC approach as shown in Fig. 3(b). 

Finally, the time cost incurred by the predictor-corrector 
algorithm and the conventional PC metamodel of (2) for the 
three test cases (n = 30, 40, and 50) is reported in Table II. 
Specifically, for the predictor-corrector algorithm, time costs 
for the 2(P+1) ESC model simulations and the 2(Q+1) MCC 
model simulations are added together to obtain the overall 
time costs. On the other hand, for the conventional PC 
metamodel of (2), only the time costs for the 2(P+1) MCC 
model simulations have been listed. All the above model 
solutions are performed on a workstation with 8 GB RAM, 
160 GM memory and an Intel i5 processor with 3.4 GHz clock 
speed. Note that the speedup achieved in all three test cases is 

roughly 5x times. This speedup is within 4% of what is 
expected from the theoretical complexity analysis of (9).  

V. CONCLUSION 

In this paper, a predictor-corrector algorithm has been 

developed for the fast stochastic analysis of multi-walled 

carbon nanotube interconnect networks. This algorithm 

crosscuts the numerical efficiency of the approximate 

equivalent single conductor (ESC) model representation with 

the rigor of the multiconductor circuit (MCC) model 

representation in order to achieve a far better accuracy-CPU 

cost tradeoff than that seen in conventional PC metamodels. 
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           (a)                        (b) 

Fig. 3: Statistics of the transient response at node N1 of Fig. 1(b). (a) Mean plus/minus three times the standard deviation (SD) of the transient 

response at node N1. (b) PDF of the transient response at node N1 at time point when the SD of the response is maximum (i.e., at t = 0.071 ps).

          

 TABLE II 

TIME COST COMPARISON WITH CONVENTIONAL PC 

 

# Shells (n) 

Overall Time cost of  

Predictor-Corrector 

(s) 

Time cost of 

Conventional 

PC (s) 

Speedup 

30 2433.10  11997.70 4.93 

40 2502.70  12858.70 5.13 

50 2662.20  13678.20 5.14 
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