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Abstract—The time domain discontinuous Galerkin Poggio-

Miller-Chang-Harrington-Wu integral equation method based on 

an improved marching-on-in-degree scheme is proposed for 

accelerating the simulation of the transient scattering responses 

of arbitrary shaped homogeneous dielectric objects. A 

combination of three weighted Laguerre polynomials is set as 

new temporal basis functions to derive the final equations. 

Therefore, the entire solution process can be accelerated. Some 

numerical examples are given to validate its efficiency and 

accuracy. 

Keywords—Improved marching-on-in-degree (MOD) scheme; 
Poggio-Miller-Chang-Harrington-Wu (PMCHW) integral equation 

method; time domain (TD); weighted Laguerre polynomials (LP) 

I.  INTRODUCTION  

In recent years, transient electromagnetic responses is 
important for the EMC design of many structures. Among all 
the simulation methods, time domain surface integral equation 
(TDSIE) methods have been widely used to get the transient 
electric and magnetic responses in time domain [1], [2]. The 
Time domain Poggio-Miller-Chang-Harrington-Wu (PMCHW) 
integral equation method is widely adopted for simulating 
dielectric targets [3]. Because it is only required to mesh the 
surface of targets and the total number of unknowns can be 
reduced. Time domain Poggio-Miller-Chang-Harrington-Wu 
(PMCHW) integral equation method has two main solutions 
for processing the time term, i.e., marching-on-in-time (MOT) 
scheme and marching-on-in-degree (MOD) scheme [4], [5], 
respectively. Compared with TD-PMCHW-MOT method, TD-
PMCHW-MOD method can achieve very high stability even 
for the very late time. However, as we all know, TD-PMCHW-
MOD suffers from its high computational cost. Although the 
memory consumption is tolerable, the entire solution process is 
time-consuming. 

In this paper, a TD-PMCHW with improved MOD method 

is presented. RWG basis functions are chosen as the spatial 

basis functions as usual [7]. Further, a combination of three 

weighted Laguerre polynomials is chosen as a new temporal 

basis function set [6], [8]. Thus, the CPU time required for this 

algorithm can be reduced and the computational efficiency can 

be improved, compared to TD-PMCHW with original MOD 

scheme. Some numerical results are presented to validate its 

efficiency and accuracy. 

II. FORMULATION 

A. TD-PMCHW 

We consider a dielectric object of permittivity ε2 and 

permeability μ2 in an unbounded space of permittivity ε1 and 

permeability μ1. According to the equivalence principle, there 

are induced electric and magnetic currents, which are denoted 

by J  an M , respectively. We have the following electric field 

integral equation:  
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   In order to avoid the time integral in (1) and (2), we 

introduce a set of new source vectors, which defined as  
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Firstly, we expand e and h  with RWG basis function  nf r  

[7], as described as  
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Next, by using  mf r  as the testing functions, we perform the 

Galerkin testing procedure to (1) and (2), and we can get 
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where  
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DN  is the total number of spatial basis functions.  

    Different from the traditional MOD method, we adopt a 

combination of three weighted Laguerre polynomials with 

successive degrees [7], [9]-[11], as given by  
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where en.j are the unknown coefficients. s is the scaling factor. 

   /2st

j jst e L st  , and jL  is the Laguerre polynomial of 

degree j . We assume that , 0 n je  and , 0 n jh  for 0j  , 

the above equation can be written as   
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After that, we use  j st as the temporal testing functions and 

perform the standard Galerkin testing procedure to the above 

equations. In order to obtain the unknown coefficients ,n ie  and 

,n ih  of degree i , we reorganize these equations. The incident 

EMP and all known electric and magnetic current coefficients 

of degree j ( 0j  ,1 , 2, ,  and  1i  ) are put in the right-

hand side, with a set of compact TD-PMCHW equations with 

the new MOD scheme derived as 
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B. Computational Complexity 

To measure their performance, we assume the number of 

spatial unknowns and the maximum temporal degree are 
DN  

and
0N , respectively. The comparison of time consumption is 

listed in Table I. 

TABLE I.  COMPARISON OF COMPUTATIONAL COMPLEXITY 

Method 
TD-PMCHW-original 

MOD 

TD-PMCHW-improved 

MOD 

Computational 

Complexity 
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III. NUMERICAL RESULTS AND DISCUSSION 

In our numerical examples, a temporal modulated Gaussian 

pulse is used as the incident wave, and described by 

               
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                           0 0 0
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where E0  = 1 V. T =8 lm, and 0 0c t  = 12 lm. 

The example is a dielectric cube ( 0.5 0 5 0 5m . m . m  ) of 

relative permittivity 2.5r  . The wave vector and 

polarization of the excitation wave are set to be ẑ  and x̂ , 

respectively. 
0f =150 MHz. The average mesh sizes are 0.2m, 

0.15m, and 0.1m, respectively. Correspondingly, the numbers 

of unknowns are 234, 360, and 522. TD-PMCHW with the 

original and the improved MOD scheme are applied to 

simulate the transient scattering responses.  
Fig. 1 shows the transient electric current responses and 

transient magnetic current responses of the dielectric cube at 
different points. The results agree well with each other. The 
RCS of the dielectric cube with different mesh sizes obtained 
by TD-PMCHW with improved MOD scheme are compared 
with those obtained by original MOD, as shown in Fig.2, 
which shows that TD-PMCHW with improved MOD can get 
very accurate results. The required CPU time is listed in Fig. 3. 
Further, by comparisons, we can see that TD-PMCHW with 
improved MOD is much faster than TD-PMCHW with the 
original MOD.  

At last, a simple dielectric rocket model is analyzed with 

relative permittivity εr =2.5. The wave vector and the 

polarization vector are ˆ ˆk y   and ˆ ˆu z  , respectively. f0 = 

200 MHz. The rocket is discretized with the mesh size of 0.06 

m, as shown in Fig.4. The total number of unknowns is 2034. 

                                 
(a)                                                               (b) 

                                 
(c)                                                               (d) 

                                 
(e)                                                               (f) 

Fig. 1. (a) Transient electric current responses and (b) transient magnetic 

current responses of the dielectric cube at point  0 169 0 343 0. , . , m . (c) 

Transient electric current responses and (d) transient magnetic current 

responses of the dielectric cube at point  0 061 0 367 0. , . , m . (e) Transient 

electric current responses and (f) transient magnetic current responses of the 

dielectric cube at point  0 278 0 225 0. , . , m . 
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Fig. 2. RCS of the cube with different mesh sizes at f = 150 MHz, when 

0  and   ranges from 180  to180 . 

 
Fig. 3. CPU Time (s). 
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Fig. 4.  A dielectric rocket model. 

                                 
(a)                                                               (b) 

Fig. 5 (a) Transient electric current responses and (b) transient magnetic 

current responses of the dielectric rocket at point  0 136 0 059 1 729. , . , . m . 

 

Fig. 6. RCS of the dielectric rocket at f = 200 MHz, when 0  . 

TABLE II.  COMPARISON OF CPU TIME FOR DIELECTRIC ROCKET 

Dielectric rocket with 2034 

unknowns 

TD-PMCHW-

original MOD 

TD-PMCHW-

improved MOD 

CPU time (min) 1625 927 

 

Fig. 5 shows the transient electric current response and 

transient magnetic current response of the dielectric rocket 

obtained by TD-PMCHW with improved MOD method, 

which shows excellent agreements with those obtained by the 

original MOD method. In addition, we compare the computed 

RCS with that obtained by software FEKO at 200 MHz. They 

are all in good agreements. Moreover, the comparison of the 

time consumption between TD-PMCHW with our method and 

traditional MOD is listed in Table II. It is clear that the TD-

PMCHW is accelerated with an improved MOD scheme. 

IV. CONCLUSION 

The TD-PMCHW method with an improved MOD scheme is 

presented to simulate time-domain responses of dielectric 

structures. A single weighted Laguerre polynomial is replaced 

by a combination of three associated Laguerre polynomials 

with successive degrees. This method not only inherits the 

benefits of all the original TD-PMCHW-MOD methods, but 

also simplifies the iterative process. Thus, the computational 

process can be sped up significantly. The presented numerical 

results have demonstrated both stability and accuracy of our 

developed algorithm. 

REFERENCES 

[1] Z. Ye, X. Xiong, M. Zhang, and C. Liao, “A time-domain hybrid 
method for coupling problems of long cables excited by electromagnetic 
pulses,” IEEE Trans. Electromagn. Compat., vol. 58, no. 6, pp. 1710-
1716, Dec. 2016. 

[2] R. Aghajafari and H. Singer, “Time-Domain electric current formulation 
for the analysis of arbitrarily shaped dielectric bodies,” IEEE Trans. 
Electromagn. Compat., vol. 54, no. 6, pp. 1260-1268, Dec. 2012. 

[3] B. H. Jung, T. K. Sarkar, and Y.-S. Chung, “Solution of time domain 
PMCHW formulation for transient electromagnetic scattering from 
arbitrary shaped 3D dielectric objects,” Progress Electromagn. 
Research,, vol. 45, pp. 291–312, 2004. 

[4] W. Luo, W. Y. Yin, M. D. Zhu, J. F. Mao, and J. Y. Zhao, “Investigation 
on time- and frequency-domain responses of some complex composite 
structures in the presence of high-power electromagnetic pulses,” IEEE 
Trans. Electromagn. Compat., vol. 54, no. 5, pp. 1006-1016, Oct. 2012. 

[5] Y. S. Chung, Τ. K. Sarkar, B. H. Jung, M. Salazar-Palma, Z. Ji, S. M. 
Jang, and K. J. Kim, “Solution of time domain electric field integral 
equation using the Laguerre polynomials,” IEEE Trans. Antennas 
Propagat., vol. 52, no. 9, pp. 2319-2328, Sept. 2004. 

[6] Z. Mei, Y. Zhang, T. K. Sarkar, B. H. Jung, A. Garcia-Lamperez, and M. 
Salazar-Palma, “An improved marching-on-in-degree method using a 
new temporal basis,” IEEE Trans. Antennas Propagat., vol. 59, no. 12, 
pp. 4643-4650, Dec. 2011. 

[7] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic 
scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas 
Propag., vol. 30, no. 3, pp. 409–418, May 1982. 

[8] H. Ataeian, P. Dehkhoda, and A. Tavakoli, “Fast time-domain analysis 
of a metallic enclosure with arbitrary-shaped apertures by marching-on-
in- degree,” IEEE Trans. Electromagn. Compat., vol. 60, no. 3, pp. 638-
646, June 2018. 

 

 

EMC Sapporo & APEMC 2019 WedAM1C.3

Copyright © 2019 IEICE 316


