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Abstract—In this paper, a novel estimation technique using K-
order models is proposed for evaluating the maximum electric
fields radiated from multiple-antenna transmitters. We first
develop the K-order models of the electric fields radiated from
multiple transmitting antennas, then utilize them for estimations.
Fundamental concepts of the estimations and detailed electric
field formulas will be presented and discussed. Several validations
are also illustrated to verify the performance and the effectiveness
of the proposed technique. For example, in evaluating the
maximum electric fields radiated from a two-dipole configuration
in an ordinary room, the maximum error caused by conventional
estimations can be as high as 8.5%. By applying the proposed
technique, it can be decreased to below 0.24% and 0.02% with
the 2- and 3-order estimations, respectively.

Index Terms—Electric Field, Estimation, MIMO.

I. INTRODUCTION

In the next generations of wireless communications,

multiple-antenna devices will be one of core technologies.

Recently, the LTE-Advanced specification indexes 2×2 multi-

input multi-output (MIMO) schemes. Furthermore, massive

MIMO techniques are expected to be a key development in 5G

systems. From the viewpoint of RF safety compliance tests [1],

finding the maximum electric field (E-field) radiated from such

devices is a challenging work, owing to the complexity of their

operations. For example, at a measurement point, different sets

of the relative phases of radiation sources give different values

of the total E-field. Thus, it is difficult to identify the set of

the relative phases that gives the maximum E-field.

In specific absorption rate (SAR) measurements [2] for

multiple-antenna transmitters, conventional measurement tech-

niques generally require measurements for all possible sets of

the relative phases with a phase step [2]–[5]. These techniques

are time-consuming or even impractical due to a large number

of necessary measurement, particularly when the phase step is

decreased and/or the number of antennas is increased.

Some advanced techniques [6]–[9] focus on particular types

of signals [6], specific antenna configurations [8], using vector

E-field probes [7], or only limited to spatial-averaged SAR [9].

Some of them provide estimated SAR with high errors (the

difference between estimated and measured/calculated SARs),

up to 5.2% in validations of two antennas in [7] or even higher

in [9].

In our previous studies, we developed a fast and simple

technique to estimate the SARs of multiple-antenna devices

[10]. It requires a limited number of initial measurements for

predefined sets of relative phases and estimates the SARs/E-

fields for any other relative phase sets. It is verified through

different scenarios, including different frequencies, antenna

configurations, or measurement systems, providing estimated

SARs with relatively small estimation errors.

In this paper, we propose a more advanced technique using

K-order models of E-fields, which greatly reduces the estima-

tion errors. In the following sections, we will explain the need

for K-order estimations and then develop useful expressions

for the estimations as well as validate them through various

scenarios in simulations and experiments.

II. K -ORDER ELECTRIC FIELD EXPRESSIONS

In the estimation technique introduced in our previous study

[10], the estimation errors are kept relatively small. However,

we observed that the error tends to increase when the number

of antennas is increased. For instance, it is around 3% for

a two-antenna case [10], or 6% for a case of three antennas

[11] in practical measurements. Additionally, when using the

estimation models in [10] to evaluate the maximum E-field of

a multiple-antenna configuration in air in an ordinary room,

we found that the error was considerably higher than the case

of SAR measurements in a human-body phantom. There are

several possible reasons for this phenomenon including the

contribution of reflected E-field components to the total E-

field at a measurement point. The reflections can be from the

inner surfaces of phantom shells in SAR measurements or

from room walls in E-field measurements in the air. Generally,

the more antennas in a transmitter, the more reflected E-field

components contributing to the measurement point. Also, the

strength of reflected signals in the air is stronger than that

in a human-body phantom. Thus, to reduce estimation error,

a new estimation model with considerations on the reflected

components is necessary.

Now, let us consider to the total E-field radiated from two

antennas at a measurement point. In consideration of the direct

and reflected components of the E-fields, the total E-field of
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the measurement point can be expressed as

E = E1 + E2e
jβ +

∑

i=1

E
(ref)
i ej∆βi , (1)

where β is the relative phase of the two antennas, j is the

imaginary unit (j2 = −1), E1 and E2 represent the direct

components, and E
(ref)
i (i = 1, 2...) represent all reflected

components from the two antennas. The ∆βi is the phase

difference caused by different path lengths of the reflected

components. The values of ∆βi are randomly distributed and

the number of reflected components is indeterminable.

Owing to the complexity of (1), it is difficult to use as an

estimation model. Therefore, we need to approximate it to a

simplified form with controllable parameters. We will do so

from the mathematically perspective. Note that the total E-

field in (1) includes the exponential functions of jβ, which

are periodic with a period of 2π. Furthermore, in general,

the ∆β and ±kβ (k = 1, 2, ....) for all different points in

a measurement scheme would occupate all values from −π

to π. Thus, it is reasonable and equivalent to approximately

express the ∆β as the multiples of β. By doing so, the total

E-field at the measurement point can be rewritten as

E =

K
∑

k=−K

ake
jkβ , (2)

where K is the order of the mathematical model of the E-field

(K = 1, 2, 3...) and ak (k = −K...K) are complex values,

representing the K-order component of the field. The complex

values ak are independent of changes in the relative phases. If

they can be determined through several initial measurements

for predefined phase sets, it is possible to estimate the E-fields

for the other phase sets. Here, the phase and amplitude of E-

fields must be captured by vector E-field probes [13]. The

estimation using such probes is called vector estimation.

In practice, some measurement systems can only provide

information on the amplitude of the measured E-field (i.e., the

|E|2). Thus, the E-field model in (2) can not be used. Now, we

will extend the model in (2) for the square of the amplitude

of the E-field. The estimation based on this model is called

scalar estimation. By taking square operations, the square of

the amplitude of the total E-field in (2) will be

|E|2 = A0 +
2K
∑

k=1

[Bk cos(kβ) + Ck sin(kβ)]. (3)

In the above equation, there are (4K + 1) real parameters

A0, Bk, and Ck (k = 1...2K). To determine them, (4K + 1)
initial measurements of |E|2 are required. This number can be

large for high order estimations. If we reduce the order of β to

K in the sine and cosine functions in (3), the number of these

parameters reduces to (2K + 1). By doing so, we eliminate

the components with orders higher than K and accept that the

expression becomes less accurately approximated. Then, the

E-field model becomes:

|E|
2
≃ A0 +

K
∑

k=1

[Bk cos(kβ) + Ck sin(kβ)]. (4)

TABLE I
K -ORDER MODELS OF TWO-ANTENNA TRANSMITTERS AND PREDEFINED

SETS OF THE RELATIVE PHASE

K No. of Formula for |E|2 Predefined

meas. β [degree]

1 3 A0 +B1cos β + C1sinβ 0, 90, 180

2 5 A0 +B1cos β + B2cos 2β 0, 90, 180,

+ C1sinβ + C2sin 2β 225, 270

3 7 A0 +B1cos β + B2cos 2β +B3cos 3β 0, 90, 135, 180,

+ C1sinβ + C2sin 2β + C3sin 3β 225, 270, 315

When K = 1, the model in (4) becomes the fundamental

model for scalar estimation developed in our previous work

[10]. Table I lists some examples of the E-field models and

the predefined sets of the relative phases for the case of two-

antenna. The E-fields/SARs for these sets will be used to

calculate the estimation factors.

Now, at a measurement point, in the kth measurement when

the relative phase of the sources is set to β(k), let |Ek|
2

be the

measured value of the square of amplitude of the total E-field

(k = 1...(2K+1)). The estimation factors of the point can be

determined by solving the following linear equations:










































|E1|
2

= A0 +B1 cos(β(1)) + . . .+
BK cos(Kβ(1)) + C1 sin(β(1))
+ . . .+ CK sin(Kβ(1));

...
...

...

|E2K+1|
2

= A0 +B1 cos(β(2K+1)) + . . .+
BK cos(Kβ(2K+1)) + C1 sin(β(2K+1))
+ . . .+ CK sin(Kβ(2K+1)),

. (5)

When the number of antennas is greater than two, we can

expand the models in similar ways. The following is an exam-

ple for three-antenna devices. The E-field at a measurement

point can be expressed as

E =

K
∑

p=−K

K
∑

q=−K

apqe
jpβejqα, (6)

where β and α are the relative phases between the second and

third antennas versus the first antenna, respectively.

Similarly, for the scalar model, the formula for three-

antenna transmitters can be expressed as

|E|
2
≃ A0 +

K
∑

p=0

K
∑

q=1

[Bpq cos(pβ + qα) + Cpq sin(pβ + qα)]

+

K
∑

p=1

0
∑

q=−K

[Bpq cos(pβ + qα) + Cpq sin(pβ + qα)].

(7)

where A0, Bpq, and Cpq are also the scalar estimation factors.

For both vector and scalar estimations, the above analyses

suggest that the number of necessary measurements for pre-

defined sets of relative phases is (2K+1) for the two-antenna

case and (2K+1)2 for the case of three-antenna transmitters.

In general, the number of necessary measurements for N -

antenna transmitters in the K-order model is (2K + 1)N−1.
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Fig. 1. Validation examples: (a) two 2450-MHz dipoles in an ordinary room,
and (b) two 2140-MHz dipoles in SAR measurements.

III. VALIDATIONS

To verify the effectiveness of the proposed K-order estima-

tion models, we present here two typical examples. The first

is a numerical validation, where we evaluate the maximum

E-field of two 2450-MHz dipoles in an ordinary room. The

second is an experimental validation, where we conduct the

SAR measurements for a configuration of two 2140-MHz

dipoles. In all cases, the dipole antennas are excited so that the

amplitudes of the sources are handled at their maximums, and

the relative phase β of the two dipoles changes from 0o to 360o

with a step. Computed E-fields (|E|2) or measured SARs for

the predefined sets of the relative phase β shown in Table I are

used for calculating the estimation factors. After the estimation

factors are determined, vector and scalar estimations will be

performed for different sets of the relative phases accordingly

to (2) and (4). For convenience, the estimated and the mea-

sured SAR or the computed E-fields (|E|2) are normalized to

the maximum value of them.

The estimation error is defined as the difference between

the normalized estimated and measured SAR (or the com-

puted E-field) for each relative phase. Now, let SARest and

SARmeas be the normalized SARs at the observation plane

obtained from estimation and measurement, respectively. The

estimation error can be written as

Error = 100 · (SARest − SARmeas) [%]. (8)

A. Numerical validation with two dipoles in an ordinary room

Fig. 1(a) shows the two-dipole configuration in an ordinary

room. For simplicity, the room is modeled with all four walls

made of a perfectly conducting material. The size of the

room is 5 × 5 × 3 [m3]. Two dipoles, separated by a quarter

wavelength, are placed at the center of the room, and the

observation plane is 0.7 m from the antennas. In general, we

can use any other planes in the validations. This example can

also be viewed as an office room with metallic blind curtains,

where signals are reflected many times inside the room. A

smaller room would result in stronger reflections. The antennas

can be considered as radiation sources from communication

devices such as WiFi hotspots or similar sources.

Fig. 2 shows the estimation errors calculated at the maxi-

mum point in the observation plane in different relative phases.
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Fig. 2. Deviations between estimated and simulated |E|2 at the maximum
point in the observation plane: (a) vector estimation, (b) scalar estimation.
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Fig. 3. Measured SAR distributions for different values of β.
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Fig. 4. SAR measurement results of two dipoles: (a) normalized maximum
local SAR in the observation plane, and (b) estimation error.

As can be seen from this figure, the estimation errors in the

K-order models (2- and 3-order models) are much smaller

than those of the previous models. For both vector and scalar

estimations, the difference of nearly 10% between estimated

and simulated E-field at the relative phase of 270o in the

previous model can be decreased to below 0.2% for 2- and

3-order estimations. This significant reduction highlights the

excellent performance of the K-order models in providing

precisely estimated E-fields.

B. Experimental validation in SAR measurement

Fig. 1(b) shows a photograph of the antenna configuration

in SAR measurements. The dipoles are separated by a distance

of a quarter wavelength, and placed 10 mm above a flat

phantom of a SAR measurement system [14]. Note that SAR

is proportional to the square of amplitude of internal E-field,

thus the K-order SAR estimation model for two-antenna case

is the same to (4). Since we only have the measured SAR point
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TABLE II
COMPARISON OF HIGH-ORDER ESTIMATIONS

Properties Our work Technique in [9]

Supports vector estimations Yes No

Supports point estimations Yes Not given

Volume scan in SAR measurement Once Every measurement

Estimation errors Small Large

Estimation factor computations Linear Nonlinear (curve fitting)

data from the SAR measurement system, we will present the

validation of the scalar estimation of the K-order model using

measured data.

Fig. 3 shows the normalized local SAR for the relative

phases of 0o, 90o, and 180o in the observation plane. For

different relative phases, we can see different distributions

and peak value of local SAR. These data will be used to

calculate the estimation factors for 1-order estimation. Fig.

4(a) presents the normalized maximum local SAR in the

measurement plane. From this figure, it is easy to identify

the maximum local SAR and its corresponding relative phase

among different phase sets. Fig. 4(b) shows the estimation

errors calculated at the maximum SAR point, where a clear

improvement of the high-order estimations can be seen. For

example, the estimation error caused by the model in [10] (also

the 1-order of the new model) is larger 3%, which is reduced

to about 1% by the 2-order or 3-order of the new model.

In the numerical validations, we can see major improve-

ments of the estimation accuracy in high-order estimations

(2- or 3-order), as shown in Figs. 2(a) and 2(b), for instance.

However, in the experiments, the 3-order estimation (or higher

order) does not further reduce the estimation error. It is

because of the uncertainty of the measurement systems, and

the incorrect setting of the relative phases of the sources during

measurements as analyzed in [12]. Thus, for the actual SAR

evaluation of multiple-antenna devices, the 2-order model is

recommended. It also does not require a significant number of

measurements for estimations.

IV. DISCUSSION AND RELATED WORKS

We have conducted a various number of other validations,

including different antenna types, frequencies, number of an-

tennas, and phantoms. In all examined cases, the K-order es-

timations can greatly reduce the estimation errors. Although it

requires the larger a number of initial measurements, compared

to that of the conventional technique in [10], the proposed K-

order estimations provide an excellent solution for evaluating

the maximum E-fields of multiple-antenna transmitters.

Regarding the determination of the maximum spatial-

averaged SAR of multiple-antenna transmitters in portable

devices, a closely related work with a high-order estimation

model has recently been reported by Li et al. [9]. Table

II gives a comparison of our proposed K-order estimation

technique and the high-order estimation in [9]. While they

technique mainly focuses on estimating the maximum spatial-

averaged SAR, our proposal is for point-based estimations,

which generally give smaller estimation errors. By supporting

both vector and scalar E-field probes, our proposed technique

can be applicable for more general purposes such as to

estimate E-fields or the Poynting vector in the near field

of multiple-antenna 5G terminals in millimeter wave bands.

Furthermore, since the set of the relative phases corresponding

to the maximum SAR can be found by estimations in a

reference plane, our technique does not require volume scans

in every SAR measurement. Also, the computational method

in determining estimation parameters in [9] is nonlinear using

least-squares curve fitting, whereas they can be determined by

solving linear equations in our technique, resulting in much

faster and more accurate computations.

V. CONCLUSION

We propose in this paper a novel technique using K-order

models to evaluate the E-fields radiated from multiple-antenna

transmitters. Beside presenting expressions of the K-order

models, we successfully demonstrate the performance and

the effectiveness of the proposed technique. Compared with

previously developed estimation techniques, the proposed K-

order estimation technique not only gives smaller estimation

errors but can also be used for a wider range of applications

and in measurement systems for multiple-antenna transmitters

such as for SAR evaluation and E-field (phase and amplitude)

determination in various environments.

Since the proposed K-order estimation may require a rela-

tively large number of measurements for predefined combina-

tions of relative phases, there is a trade-off between the number

of necessary measurements and the accuracy of measurements.

An appropriate choice of the estimation model and its order

is needed, depending on the circumstances, to satisfy other

factors such as the evaluation time and cost.
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