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Abstract—In the design stage of electromagnetic device, the 
way to handle the uncertainty of design parameters has attracted 
wide attention. Monte Carlo Method works well when dealing 
with uncertainties but it consumes too much time and computing 
resource. This paper proposes a computationally efficient way to 
achieve robustness based on Stochastic Collocation Method and 
TEAM 22 is used as a verification example. It is demonstrated 
that the approach combining Stochastic Collocation Method and 
genetic algorithm provides high computational efficiency without 
losing accuracy comparing with Monte Carlo Method. 
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I.  INTRODUCTION  

For finding more robust and reliable designs, the 
uncertainties from design variables and design process have 
been widely considered in the design stage of electromagnetic 
(EM) devices. Many scholars have used a variety of methods to 
obtain a robust device or control method. Some examples of 
the state-of-the-art optimization methods used in the field 
comprise a possibility-based optimal design algorithm [1], a 
surrogate modeling technique based on a second-order 
equation [2], and the space-time kriging surrogate model [3]. 

 The previous methods require a lot of time to obtain a 
robust solution, which significantly affect computational 
efficiency of EM optimization [4-6] .Therefore, some measures 
are taken such as evaluating the robustness by the worst-case 
optimization [4], reusing global surrogate model [5], and 
adopting an efficient serial-loop optimization strategy [6]. 
However, these methods more or less show limitations when 
they are applied to other optimization problems. 

To improve the numerical efficiency of EM optimization 
while maintaining design robustness, a general optimization 
strategy based on Stochastic Collocation Method (SCM) [7,8] 
is proposed in this paper. The basic concepts of SCM are given 
in Section II. Section III shows the process of obtaining the 
robust optimal solution based on SCM. Section IV expounds 
the robust TEAM 22 problem [9] and compares the robustness 
and time consuming of the optimization results obtained by the 
different methods. Finally, the paper’s conclusions are in 
Section V. 

II. OUTLINE OF THE STOCHASTIC COLLOCATION METHOD 

Over recently years, uncertainty analysis methods have 
become of more interest in computational electromagnetics 
(CEM) in order to take account of practical complexity and 
unpredictability within a simulation. To this end, design 
parameters of EM simulation are presented by random 
variables with properly assigned distributions.  

The Stochastic Collocation method (SCM) is a popular 
choice for the stochastic processing of complex systems where 
well-established deterministic codes exist. By utilizing the 
SCM method, the relationship between the result of uncertainty 
analysis and the variables is approximated by the sum of the 
polynomials. One way is to use a Lagrange interpolation 
approach that is given by  
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where y(x) is a polynomial approximation of the true solution 
f(x). xi and f(xi) stand for the collocation points and the 
corresponding deterministic solutions of these points, 
respectively. li(x) are the Lagrange interpolation polynomials 
structured by the collocation points. 
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 As for the SCM, the collocation points is given by the zero 
points of the generalized Polynomial Chaos [7]. The 
orthogonal polynomial basis is selected according to the 
probability distribution of the random variables, as shown in 
Table I. Specially, if the variables are multidimensional, the 
interpolating points are the tensor product form of interpolating 
points in every dimension [8]. The accuracy of the SCM is 
elaborated in [10]. 

TABLE I.  THE CORRESPONDING BETWEEN THE TYPE OF GENERALIZED 
POLYNOMIAL CHAOS AND RANDOM VARIABLES 

Random variables Wiener-Askey chaos Support 
Gaussian Hermite-chaos ( , )   

Gamma Laguerre-chaos [0, )  

Beta Jacobi-chaos [ , ]a b  

Uniform Legendre-chaos [ , ]a b  
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III. SCM BASED ROBUST OPTIMAL DESIGN  

The traditional optimal design problem is constructed as  
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where f(Pd) is the objective function for design variable set Pd ; 
gi(Pd) are the constraint functions for i=1,…,m. 

 When the uncertainties are taken into account, the random 
design variable set P is defined as 

 P P ξ  

where P  is the mean value of P according to the statistical 
definition, while ξ  is the random variable whose distribution 
can be assumed to be uniform in order to obtain a robust 
solution to the optimization problem. Thus, P can be redefined 
by normalization as  

 x  P P η   (4) 

where η  is half of the range of the distribution and x a random 
number between [-1,1]. 

The incorporation of the robustness analysis with 
formulation (4) incurs high computational time. For the 
traditionally used Monte Carlo method (MCM), serious 
computational burden is imposed due to the required large 
sample size as well as the iterative nature of the design 
optimization process. In contrast, the SCM is similar to MCM 
in the sense that it involves only the solution of a sequence of 
deterministic calculations at given collocation points in the 
stochastic space. 

By applying the SCM to robust optimal design problem, f(P) 
can be approximated by Lagrange interpolation polynomial 
according to (1). 
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where Pi (i=1,2,…,n) is the collocation points for univariate or 
tensor product form of interpolating points for multivariate 
with the similar form as (4) 

i i
x  P P η  

Generally, the zero points of generalized Polynomial Chaos 
in Table I are chosen to be xi. For instance, the Legendre 
polynomials are orthogonal with respect to the uniform 
distribution. Its expression is as follow. 
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Let the zero points of the n-dimensional Legendre 

polynomial be
1 2
, , ...,

n
x x x , and the Lagrange basis polynomial 

li(x) are given by (2). 

After the y(P) is constructed, the mean of the obtained n 
values is defined as the objective function value of P as MCM 
does. It is denoted as: 
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The SCM is not subject to the number of sampling points 
but to the number of variables. For problems where the 
solution is a smooth function of the random input variables and 
the dimension of the stochastic space is moderate, SCM has 
been shown to converge much faster than MCM [11]. 

IV. APPLICATION TO TEAM 22 

A. TEAM workshop problem 22  

The TEAM workshop problem 22 is an optimization case 
of the Superconducting Magnetics Energy Storage (SMES) that 
has been used as a benchmark problem in magneto statics. The 
goal of TEAM 22 is to find the best configuration in SMES 
device to maintain the stored energy while minimizing the 
stray field. The stray field is represented by magnetic flux 
density Bstray and it is evaluated in 21 equidistant points marked 
on lines a and b in Fig.1. 
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Furthermore, to keep the superconductivity characteristic, 
the restriction is given by the inequality: 

 2

max
( 6.4 +54)  (A/mm )J   B   (9) 

Since the current density of both coils is fixed in the TEAM 
22, the inequality (9) can also be expressed as: 
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4.92TB   (10) 

When the robustness is taken into account in the 
optimization of TEAM 22, it is assumed that the adjustable 
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Fig.1.  The configuration of the TEAM 22 
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parameters R2, h2, d2 in outside coil suffer undesirable and 
unavoidable presence of the uncertainties that can cause 
damage in the optimization system and its results. The goals of 
the robustness-considered case remain the same as the classical 
problem. Consider the design variables  

2 2 2
= , ,R h dP , the 

robust TEAM 22 problem can be formulated with the 
objectives and the restriction above as 
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where Bnorm=200μT; Bmax is the maximum magnetic flux 
density; E is the energy that is actually stored in the designed 
device; E0 is the target stored energy with a fixed value 

180MJ;
1

 ,
2

 are the barycentric weights. Take
1

 =0.001, 

2
 =1 in this case to keep the relative value of the leakage flux 

in the same order of magnitude as the relative error of the 
stored energy: 
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 The genetic algorithm (GA) is used to optimize the 
TEAM22, and the robustness is achieved by using MCM and 
SCM respectively at the fitness function. The termination 
condition of GA is set to iterate 20 generations and the 
optimization results are compared after 20 generations. The 
workstation used in this paper is Dell T7610 with Intel(R) 
Xeon(R) E5-2687W v2 3.4GHz and 128G RAM. 

B. Robustness Achieved by SCM  

The cubic polynomials can lead the uncertainty analysis to 
convergence considering both computational efficiency and 
accuracy according to [12]. Thus, the number of configuration 
points are chosen to be 3 in SCM. The three-dimensional form 
of the Lagrange interpolation formula is given by: 
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As for the TEAM 22, the interpolation formulation is 
formed as: 
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where 

 

2

2

2

2( ) 2

2 ( ) 2

2( ) 2

i R i

j h j

k d k

R R x

h h y

d d z







  

  

  







   

with x, y, z random numbers between [-1,1]. The interpolating 

points are  1 2 3

15 15
, , , 0,
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 where I can be x, y 

or z, and the tensor product form is 
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.Thus, equation (13) 

can provide the answer. 

 Similarly, 100 values of x, y and z are each randomly taken 
and substituted into (14) to obtain the corresponding objective 

function value .The notation ˆ ( )
S

f P  is defined as the mean of 

the 100 obtained values to represent the objective function 
value of P given by: 
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The result of optimization is shown in Fig.2. The optimal 
solution is P = {3.123, 0.534, 0.344}. 

C. Results and Discussion 

The maximum value of objective function M in the robust 
interval 0.6D η  is found after obtaining the optimized 
solution. The rate of change in function value is defined as 

=
M f

f



 

where f is the optimal function value obtained by different 
methods. 

 The “normal” solution that does not consider robustness is 
also obtained. And it is compared with the solutions obtained 
above, as outlined in Table II where t is the time consumed for 
obtaining the optimal solution. The f obtained by SCM is 
similar to the “normal” one after 20 generations of operation. It 
can be seen from   that the performance of EM device 

TABLE II.  COMPARISON OF ROBUST OPTIMIZATION RESULTS OBTAINED BY DIFFIRENT METHODS 

Method R(m) h(m) d(m) f M   t(s) 
Normal 3.08 0.508 0.389 0.0180 0.0321 78.33% 4863.35 
MCM 3.115 0.608 0.311 0.0197 0.0241 22.34% 146415.48 
SCM 3.123 0.534 0.344 0.0185 0.0241 30.27% 23288.96 
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considering robustness is more stable. When taking the 
robustness into account, the time consumed increases 
substantially. And the efficiency of achieving robustness by 
using SCM is improved by nearly 84.09% comparing with the 
time consumed by using MCM. Thus the SCM is an effective 
technique in terms of accuracy and computational efficiency. 

V. CONCLUSION 

 The uncertainties which widely existed in design variables 
and design process is taken into account in the optimization of 
EM device. The SCM exhibits comparable calculation 
accuracy to MCM with time consuming much less than MCM. 
When dealing with TEAM 22, both MCM and SCM obtained 
robust solution. The computing efficiency using SCM is 
improved by nearly 84.09%.  
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