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Abstract—Modulation classification is the technological basis 
of adaptive interference mitigation in communication system. 
This paper proposes a modulation classification method for very 
high frequency (VHF) signals, which is based on deep 
convolutional neural network (CNN) and cyclic spectrum graphs. 
First, the cyclic spectrum of VHF signals is analyzed. Then, a 
deep learning method based on CNN is proposed, down-sampling 
and clipping technologies are used for preprocessing cyclic 
spectrum images, parameters of the proposed neural network are 
optimized, and finally the modulation classification is realized. 
The experimental results show that, the proposed method has 
high modulation classification accuracy and less computation 
burden in low SNR. 
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I.  INTRODUCTION 

Modulation classification is the technological basis of 
adaptive interference mitigation in communication system, and 
it has been a hot research topic of military and civilian 
communication system in many years, especially in very high 
frequency (VHF) band. Previously, modulation classification 
has been mainly accomplished by likelihood-based methods 
[1,2] and feature-based methods [3,4]. In general, likelihood-
based methods require specific parameters or prior information, 
and feature-based methods require the expert features of signal, 
such as instantaneous amplitude, phase, cumulants and 
constellation diagram. However, these traditional methods 
typically have high computational complexity and are limited 
in low SNR. 

Recently, deep learning architecture [5] has been attracting 
increasing attention due to the successful applications in 
various fields, such as computer vision, natural language 
processing and economics. In [6], the authors propose a deep 
learning method based on convolutional neural networks 
(CNN), which can classify 11 analog and digital modulation 
signals. Based on [6], the authors in [7] propose three 
convolutional neural networks based on temporal IQ, 
amplitude/phase and frequency spectrum, respectively, and can 
realize interference recognition in ISM frequency band. The 
authors in [8] propose a modulation classification method 
based on deep neural network in frequency-selective fading 
channels. In [9], signal constellation diagram is introduced and 
two new CNN-based models, AlexNet and GoogLeNet, are 
used for modulation classification. 

In this paper, we consider the modulation classification of 7 
communication signals, including AM, FM, 2FSK, 4FSK, 
BPSK, QPSK and MSK, which are extensively used in VHF 
band. Based on the deep learning architectures, a multi-layer 
CNN model is built for addressing this issue. First, the theory 
of cyclic spectrum is given and the feasibility of modulation 
classification based on the two dimensional gray images of 
cyclic spectrum is analyzed. Then, a deep learning method 
based on cyclic spectrum and convolutional neural network is 
proposed, down-sampling and clipping technologies are used 
for preprocessing cyclic spectrum images, parameters of the 
proposed neural network are optimized, and finally the 
modulation classification is realized.  

II. CYCLIC SPECTRUM ANALYSIS OF SIGNALS 

Cyclic spectrum analysis is an important tool for analyzing 
the stationary characteristics of signals. Note that the cyclic 
spectrum of stationary noise is nearly zero at non-zero cyclic 
frequency, thus it has good anti-noise properties. For a 
modulated cyclostationary signal ( )x t , the cyclic 

autocorrelation function ( )xR   can be written as 
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where T̂  denotes the cycle,   denotes the interval and   
denotes the cycle frequency, respectively. Through Fourier 
transform, ( )xR   becomes 
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where ( )xS f  is the corresponding cyclic spectrum, and 
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is the spectrum of ( )x t . 

Fig. 1(a) and Fig. 1(b) present the cyclic spectrum of AM 
and BPSK modulated signals and the corresponding 2-D view 
of gray images of f   plane, respectively, where the more 
white the pixels, the greater the values in gray images. It is 
obvious that the cyclic spectrum of AM and BPSK signals is 
different in details, especially in peak regions with the whitest 
pixels of gray image. Therefore, we can select the two-
dimensional gray images of cyclic spectrum as the input data, 
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and the deep CNN structure can be used to extract and learn 
multi-scale features of modulation signals automatically.  

 
(a) 

 
(b) 

Fig. 1. Cyclic spectrum and the corresponding 2-D view. (a) AM signal (b) 
BPSK signal. 

The original two-dimensional gray images of cyclic 
spectrum is usually large and has high resolution, CNN hardly 
converge in large samples and may cause huge burden on the 
computer storage. However, it is noted that the features of 
cyclic spectrum are sparse and the data is high redundancy, as 
shown in Fig. 1, the gray images of cyclic spectrum has the 
same value in some regions and can be sparsely represented 
effectively. Therefore, on the premise of unchanging the 
fundamental features, preprocessing the original gray images of 
cyclic spectrum is necessary and feature reduction is an 
important step. 

First, we use the down-sampling technology. Assume that 
the original gray image is divided into K  same-sized local 
receptive domains , 1, ,k k K   , the number of pixels in 
each domain is N , and all domains should be no overlap each 
other and the total number of pixels is NK . By down-sampling, 
all pixels in k  is replaced by one single pixel kh , and the 
total number of pixels is reduced to K .In this paper, there are 
only 7 modulation signals need to be classified, and the 
structure of the proposed CNN can be relatively simple. To 
reduce parameter optimization and increase convergence speed, 
we use the classical LeNet-5 CNN model in [10] for reference 
and we set 28K  . Specifically, the pixel with maximum 
value in k  is selected as kh , and we have  
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Then we use the clipping technology for further reducing 
the information redundancy of the gray images. The bottom 
right corner of the preprocessed images with 16 16  pixels are 
clipped as feature images. 

 
Fig. 2. Pre-processed cyclic spectrum of 7 modulation signals. 

Fig. 2 shows the clipped gray images of 7 different 
modulation signals. It is obvious that the distribution and 
brightness of feature points of different signals are different. 
Thus, the pre-processed 16 16  pixels gray images of cyclic 
spectrum, as shown in Fig. 2, can be used as the dataset for 
deep learning. 

III. THE STRUCTURE OF CNN 

The structure of the proposed CNN is presented in Fig. 3, 
which includes convolutional layer C1, pooling layer S2, 
convolutional layer C3, pooling layer S4, fully-connected layer 
C5, fully-connected layer F6 and fully-connected layer O7. 
Based on the classic LeNet-5 model, we fine tune the size of 
convolutional kernels and feature maps for improving the 
convergence speed of CNN. The parameters of each layer are 
set as follows 

 
Fig. 3. Structure of the proposed CNN. 

1) Convolutional layer C1. The size of convolutional kernel 
is 5 5 , the number of feature maps is 6, the convolution step 
is 1, and the size of the output feature map is 6 (12 12)  . 

2) Pooling layer S2. The output feature maps of layer C1 
are pooled with 2 2  filters, where the maximum value is 
chosen from four values, and the size of the output feature map 
is 6 (6 6)  . 

3) Convolutional layer C3. The size of convolutional kernel 
is 5 5 , the number of feature maps is 8, the convolution step 
is 1, and the size of the output feature map is 8 (2 2)  . 

4) Pooling layer S4. The output feature maps of layer C3 
are pooled with 2 2  filters, and the size of the output feature 
map is 8 (1 1)  . 

5) Fully-connected layer C5. This layer consists of 120 
neurons and is fully connected with layer S4, and the size of 
the output feature map is 120 (1 1)  . 

6) Fully-connected layer C6. This layer consists of 84 
neurons and is fully connected with layer C5, and the size of 
the output feature map is 84 1 . 

7) Output layer O7. Output layer O7 is a fully-connected 
layer and consists of 7 neurons, which is corresponding to 7 
modulation signals, and the size of the output is 7 1 . 

Convolution operation is the core of CNN. The input 
feature maps are convoluted with convolutional kernel, and 
then the results is obtained through nonlinear activation 
function, which can be expressed as follows 

 1
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where 1l
iX   denotes the input feature map, l

iX  denotes the 

output feature map,   denotes the convolution operation, l
jb  
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denotes the bias, l
ijK  denotes the convolutional kernel, jM  

denotes the set of input feature maps, and ( )V   denotes the 

activation function. l
ijK  and l

jb  are the parameters to be 

optimized. Therefore, the training of CNN can be divided into 
two steps: 

1) Forward propagation. For the multi-classification 
problem with N  training samples, C  classes and L  layers, 
the cost function can be expressed by square error function  
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where n
ko  denotes the true label of the thn  image of the thk  

sample, n
ky  denotes the predicted label. 

2) Back propagation. Calculating partial derivatives of the 
weight W  and the bias b  of E , where   denotes the 
learning rate, and the parameters are updated as 

( , ), ( , )ij ij j j
ij j

W W E W b b b E W b
W b
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In practice, the signal in VHF band often last for a short 
time, which results in few labeled data. However, supervised 
learning is based on a large number of labeled data, and 
directly supervised learning on few labeled data is easy to 
cause overfitting. To address this problem, we use sparse 
filtering method to pre-train the CNN, and an unsupervised 
learning algorithm is proposed based on few labeled data. 

Suppose the number of samples is N , the number of 
features is M , and the feature matrix can be obtained as 
follows 
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where ( ) , 1, , , 1, ,i
jf i N j M    denotes the thj  feature of 

the thi  sample.  

Sparse filtering method is efficient because it has only one 
hyperparameter M . Specifically, sparse filtering is based on 
optimizing the following properties of feature distributions: 
population sparsity, lifetime sparsity and high dispersal. For C1 
layer of the proposed CNN model, the convolutional kernel is 

 6 5 5 W  , the bias is 6 1b  , and the feature matrix F  
can be written as 

   2
6( ,1, ) LV repmat L       F WH b    (9) 

where 5 5, 1, ,i i L H   ,    5 5
1 2, , , L

L
  H H H H    

denotes L  samples of size 5 5  extracting from cyclic 

spectrum, and   denotes smoothness coefficient. Firstly, the 
matrix F  is normalized by rows 
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Second, the matrix F  is normalized by column  
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Then the optimization objective function can be written as 
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where 
1
  denotes the L1-norm, ( ,1, )repmat Lb  denotes the 

vector containing L  copies of b  in the row and column 
dimensions. The optimization problem can be solved by 
numerical solvers that implement BFGS, such as the “fminunc” 
function in MATLAB, and the optimized optW  and optb  of C1 

layer can be obtained.  

 
Fig. 4. Pre-training and fine-tuning steps based on sparse filtering. 

Repeating the previous process layer by layer, we can also 
obtain the optimized optW  and optb  of C3 layer. Fig. 4 shows 

the pre-training and fine-tuning steps based on sparse filtering. 
Pre-train the proposed network with optimized optW  and optb , 

and fine-tune it with few labeled data, and finally we can use 
the well-trained CNN to recognize modulation formats. 

IV. SIMULATION RESULTS 

In this paper, the hardware environment is Windows 7-
64bits, Intel i7-8700@3.20GHz with 32GB RAM and NVIDIA 
GeForce GTX 1060-6GB, and the additive white Gaussian 
noise is introduced. 

A. The Effect of Structures of CNN 

First, we analyze the effect of parameters of CNN under 
supervised learning. 4 structures of CNN are designed with 
different convolutional kernels and feature maps, as shown in 
Table I. It is noted that the No.4 structure in Table I 
corresponds to the model in Fig. 3. All structures are tested for 
50 times with the testing SNR=0dB, 5dB and 10dB, 
respectively, and the results are shown in Table II. It is obvious 
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that the more the number of feature maps in convolutional 
layer, the higher the classification accuracy, but the more time 
consuming. Interestingly, the size of the convolutional kernel 
has little effect on the results. Therefore, we can choose No.3 
and No.4 structures in Table I as the optimal CNN structure. 

TABLE I.  FOUR STRUCTURES OF CNN 

No. 
C1 layer C3 layer 

Kernel Features Kernel Features 
1 3×3 2 4×4 4 
2 3×3 6 4×4 8 
3 5×5 2 5×5 4 
4 5×5 6 5×5 8 

TABLE II.  COMPARISON OF FOUR STRUCTURES 

No. 
Total accuracy（%） Running time 

(s) 0dB 5dB 10dB 
1 93.0 98.2 99.1 56.5 
2 93.4 99.0 99.7 178.3 
3 92.8 98.3 99.3 51.7 
4 93.7 98.9 99.8 163.5 

Table III shows the result of No.4 structure under 
SNR=5dB. The classification accuracies of all signals are over 
98%, except for BPSK and QPSK, which are easily confused 
with MSK, and the total classification accuracy is 98.9%. Thus, 
it is indicated that the proposed method is little influenced by 
noise and is effective even in low SNR. 

TABLE III.  THE RESULT OF NO.4 STRUCTURE UNDER SNR = 5DB 

True 
Predicted (%) 

BPSK QPSK 2FSK 4FSK MSK AM FM 
BPSK 97.2 0 0 0 2.8 0 0 
QPSK 0 97.8 0 0 2.2 0 0 

2FSK 0 0 100 0 0 0 0 

4FSK 0 0 0.8 99.2 0 0 0 

MSK 0 1.8 0 0 98.2 0 0 

AM 0 0 0 0 0 100 0 

FM 0 0 0 0 0 0 100 

B. The Performance of Unsupervised Pre-training 

Then, we analyze the performance of unsupervised learning. 
For each modulation signal, 1000 unlabeled samples are 
randomly generated for unsupervised pre-training and the SNR 
is randomly varied in the range of 0-30dB, and 500 testing 
examples are generated and the SNR is 10dB. 

1) Large labeled training sample scenario 
For each modulation signal, 2000 labeled training samples 

are generated. Fig. 5(a) shows the performance of supervised 
training and unsupervised pre-training under large dataset. It 
can be seen that supervised learning converges only after 90 
epoches, and the accuracy can reach 98%, while the 
unsupervised pre-training with supervised fine-tuning 
converges after 11 epoches, and the accuracy can reach 99.2%. 

2) Small labeled training sample scenario 
For each modulation signal, 200 labeled training samples 

are generated, Fig. 5(b) shows the performance of supervised 
training and unsupervised pre-training under small dataset. It 
can be seen that supervised learning cannot converge within 
100 iterations, due to few labeled samples, while the 
unsupervised pre-training with supervised fine-tuning can 

converge after about 50 epoches, and the accuracy can reach 
81%. 

 
(a)                                                         (b) 

Fig. 5. Performance comparison of unsupervised pre-training and supervised 
training. (a) large labeled training sample scenario (b) small labeled training 
sample scenario. 

V. CONCLUSIONS 

In this paper, a deep learning method based on cyclic 
spectrum and CNN is proposed, down-sampling and clipping 
technologies are used for preprocessing cyclic spectrum images, 
and the modulation classification is realized. Simulation results 
show that, the proposed method has high modulation 
classification accuracy and less computation burden in low 
SNR. Moreover, unsupervised pre-training has good 
performance in small labeled training sample scenario. Possible 
future research might concern the effects of carrier frequency 
and channel in practice. 
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