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Abstract 
 
    In this paper, the scattering of several cavities is studied by using the Connection 
Scheme[1] for cavity problems.  As a result, we found that when the aperture size is small 
enough, the key factor that affects on cavity scattering is the shape of the fringe area of 
the cavity aperture, while the effect of its interior shape can be ignored. When the 
aperture size becomes large, the effects of the interior shape become more and more 
important, even for the case that only one dimension of the aperture becomes large while 
another dimension is small enough. 
 
1. INTRODUCTION 
 
    The cavity scattering is a very general phenomenon. It includes the scattering from a 
plane inlet, the scattering from a missile silo, and that from the cracks and gaps mounted 
on the surfaces of all kinds of objects. The typical numerical methods for cavity 
scattering problems are Finite Element Method[2], Finite Difference of Time Domain[3], 
as well as Connection Scheme based on integral equations and equivalent principle, and 
so on. In real world, some cavities are very complex in shapes while others are simple, 
for instance the long and bended cavities and the narrow and straight cavities.  For the 
case that a cavity is very long in depth, the computation complexity becomes very large, 
while the whole cavity is taken into account.  So can we just take one part of the cavity 
into account and ignore its other parts? In this paper, the Connection Scheme is 
employed for calculating the scattered fields from several cavities.  As a result, we found 
that when the cavity aperture is small enough, the primary factor that affects on the 
cavity scattering is the shape of the fringe area of the cavity aperture, while the effect by 
its interior shape, for instance the depth, can be ignored. Based on this characteristic, 
the computation complexity for solving the scattering from a thin-long cavity can be 
reduced drastically. But when the aperture size becomes larger and larger, the effect 
from the interior shape becomes more and more important, even for the case that only 
one dimension of the aperture becomes larger and another dimension keeps an enough 
small size. It suggested that the analysis of scattering from crack or gape is not always so 
simple, viz. just considering it as a narrow groove. The inner part behind the crack 
should also be taken into account. 
  
2. SIMPLY DISCRIPTION OF CAVITY CONNECTION SCHEME 
 
    Cavity Connection Scheme (CS) is an integral equation algorithm for 3 dimensional 
cavity scattering problem designed by Tai-Mo Wang and Ling Hao in 1991[1]. Its main 
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idea is to dissect a long cavity into several small sections.  Commonly, every section has 
two open sides, viz. two apertures. In each section the magnetic integral equation is 
employed to construct the relationship, viz. the admittance matrix between the magnetic 
field and the magnetic current on its two apertures. On the apertures shared by two 
adjoined sections, the field and current continuity is used to  “connect” these two 
sections into one new section, simultaneously, the admittance matrix of the new section is 
obtained by merging the admittance matrices of the two original sections. Employing 
this scheme recursively, all sections are “connected” into one section, viz. the cavity, and 
at the same time, the admittance matrix that relates the magnetic field and magnetic 
current on the cavity apertures is obtained. Here if the cavity has a shorted end, one of 
its apertures is considered to be zero in size.  The outer space may be thought as another 
section of the cavity. But it has source. Hence employing MFIE to this special section, 
one obtains the relationship among the magnetic field, the incident magnetic field and 
the equivalent magnetic current on the aperture of this section. Then “connecting” this 
section with the cavity via the field and current continuities on their adjoined part-the 
cavity aperture, we can solve out the magnetic currents on the aperture.  
  
3. NUMERICAL ANALYSIS VIA THE CONNECTION SCHEME 
     
    The first example is a rectangular cavity with the aperture size of 232.048.0 λ× . It is 
mounted on an infinite plane. Its depth d is a variable. See figure 1.  Figure 2 shows its 
θθ , φφ , and x polarized RCS, for the cases of λ2.3=d  and λ10 , respectively.  We can 
see that although their depths are different, their RCS results are the same.  In applying 
Connection Scheme, these two cavities are divided into 8, and 20 sections, respectively.  
The angle between the scattering direction and axis z is �40 .  
    The second example is a bended cavity having the same aperture shape with the first 
example. See figure 3. It consists of two sections. The upper section is a rectangular 
cavity with the depth of d  a variable, while the lower part is an offset slant cavity with 
the height of λ9.0=h  and the slant angle of �30=θ .  Figure 4 shows its φφ  polarized 
RCS. For comparison, the results of the rectangular cavity in the first example with the 
depth of λ10=d are also shown here.  From this figure we can see that when λ5.0≥d , 
the results of the bended cavity are the same as that of the rectangular cavity. 
     From these two examples, we can conclude that when the aperture size is small 
enough, the dominating factor that affects the cavity scattering is the shape of the fringe 
area of the cavity aperture. Hence the computation complexity of solving the scattering 
from a thin-long cavity can be reduced drastically by just replacing it with a narrow 
cavity (about λ5.0 ) having the same aperture shape.  
    Is this conclusion suited for the large aperture cavities? The answers from the third 
example are negative. The third example is a rectangular trough.  See figure 5. Its 
aperture size is 225.162.0 λ× . The depth λ425.0=d , λ85.0 , and λ75.1 .  Figure 6 shows 
its φφ  polarized RCS. The result for the case of λ85.0=d  agrees well with that from [1].  
From this figure, we can conclude that when the size of the aperture becomes large, the 
effect of the interior part of the cavity becomes more and more important, even for the 
case that the size of one dimension remains small enough. Figure 7 shows its θθ  
polarized RCS.  In this figure, the results of the three cases are the same. Because the 
aperture size along axis y is only λ2.0 , a very small number, the only guide wave model 
propagating in the trough is TE01 model. But TE01 model hasn’t contribution to the θ  



polarized far field on the XoZ plane. Thus the only part that has contribution to the θ  
polarized far field on the XoZ plane is the diffraction effect of the fringe.  
 
4. CONCLUSION 
 
    From the numerical study of the scattering by several cavities, we had found that 
when the aperture size is small enough, the key factor that affects on cavity scattering is 
the shape of the fringe area of the cavity aperture, while the effect of its interior shape 
can be ignored.  This will drastically reduce the computation complexity for solving the 
scattering from the thin-long cavity. But when the aperture size becomes large, the 
effects of the interior shape become more and more important, even for the case that 
only one dimension of the aperture becomes large while another dimension is small 
enough. 
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FIGURES 

 
Figure 1.  A rectangular cavity.                                         

 
 
Figure 2. RCS of the cavity demonstrated in figure 1. (a) λ2.3=d , (b) λ10=d . 
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Figure 3. A bended Cavity. 

 
Figure 4.  Phi-phi polarized RCS of the bended cavity. 
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Figure 5. A trough. 

 
 
Figure 6. RCS of the trough. (a) phi-phi polarized, (b)theta-theta polarized. 
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