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1 Introduction

An open-ended coaxial line has been commonly utilized to measure the dielectric constant of a
slab medium at microwave frequencies due to its easy application. An open-ended coaxial line
with a small aperture is, however, very ineffective to distinguish the low permittivity materials
at low frequencies. This is because the reflection coefficient magnitude is almost unity and its
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Figure 1: Comparison of the reflection coefficients for the several permittivity materials. (inner

conductor radius : 1.4264 mm, outer conductor radius : 4.7250mm [2], and € = 2.08)

phase remains unchanged for two different materials as shown in Fig. 1. A large aperture size
of an open-ended coaxial line is thus necessary for the accurate estimation for the reflection
coefficients of low permittivity materials at low frequencies [1]. To achieve accurate permittivity
estimation, we will introduce a flared coaxial line that is composed of a conical waveguide
with a large aperture size. A conical waveguide is connected to the terminal of a coaxial line
to increase an aperture size and reduce the reflection. The geometrical structure is shown in
Fig. 2. In order to calculate the reflection coefficient, the rigorous scattering analysis based
on the boundary condition is necessary. In sections 2 and 3, we shall solve the boundary-value
problem of radiation from a flared coaxial line. A flared coaxial line is described into multiply-
stepped coaxial line for scattering analysis. The Hankel transform and mode matching is used
to obtain the modal coefficients for multiply-stepped coaxial lines. In section 4, computations
are performed to show the behavior of reflection coefficients.
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2 Field Representations

We shall consider a flared coaxial line that radiates into a dielectric slab backed by air as shown
in Fig. 2 (a). A flared section of a coaxial line is modeled in terms of the N-step coaxial lines
with constant radii @ and r. N-step model is illustrated in Fig. 2 (b). An incident TEM mode
exicites the coaxial line. In region (X) (a < r < b,z < —t1), the incident and reflected H fields
are
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where B¢ = w /fi€g, ken = (/B> = M?, Fulr) = Ji(Ar)No(Anb) — Ni(Anr)Jo(Anb), and
Jm(-) and N, (-) are the mth order Bessel and Neumann functions, respectively. Note that
An is the eigenvalue satisfying the characteristic equation, Jo(Ana)No(Apd) = No(Ana)Jo(Anb).
The normalization factors of TMy, modes of the coaxial line are Ay = 1/y/In(b/a), A, =

/2 - 2852,
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Figure 2: (a) Longitudinal section of a flared coaxial line with a flange (b) Geometry of N-step

model for a flared coaxial line.

In region (p) (a <1 <71y, —t, <z < —tp41,1 <p < N), H field consists of the TEM mode and
higher TME)’;L) modes as
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where Ggp)(r) = Jl()\() )No()\%)rp) Nl()\gl)r)Jo()\gl)rp) By = w,/fE, and B =
2



\/ 5p2 _>\7(1p 2, Similarly, >\1(1p ) is the eigenvalue of the coaxial line with the equation,
TP a)No (N ry) = No(Wl @) To (A )-
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The normalization factors are given as By’ = 1/4/In(rp/a), By’ =7y’ /4|2 — 2303(/\7(17;).

In region (S) (0 < z < d) and region (O) (z > d), the fields are represented in terms of the
continuous mode in the spectral domain as

Hy(r2) = [ [ Qe+ Hy Qe e (e (4)
H(r,z) = /Oooﬁo@)e“o(zdkh(cr)dc (5)

where ks = V/BE — (%, Bs = w\/li€s, ko = V/Bg — (% and B, = w/Ji€,.

3 Enforcement of Boundary Conditions

To obtain the simultaneous equations for unknown coefficients, we enforce the boundary condi-
tions on the field continuities at z = —t1, z = —t,(p > 2), z = d, and z = 0, respectively. The
boundary conditions to be enforced are

EM(r,—t;) = { Ei(r,—t1) + Ef(r,—t1), a<r<b

0, otherwise
HY (r,~t) = Hi(r,—t1) + Hj(r,~t1), a<r<b (7)
(p=1) (p _
Eﬁp) (’I’, _tp) — ETP (Ir? tp)a a<r< ’l”p_l (8)
0, otherwise
H((f) (r,—tp) = Hépﬁl)(r, —tp), a<r<rp 9)
Ep(r.d) = Ej(r.d) (10)
Hy(r,d) = H(r,d) (11)
EM(r,0), a<r<
T S (12)
0, otherwise
Hy(r,0) = H{V(r0), a<r<ry (13)

Using the above boundary conditions, it is possible to constitute a system of simultaneous

(1) (1))’ (d7(12),e,(12)), o (d(N) (N))

equations for the modal coefficients 7,, (dn’,en n sen ). The reflection

coefficient for the TEM mode is given by ~q.

4 Numerical Computations

The dimensions of the structure are a = 0.815mm, b = 2.655mm, R, = 30mm, and H = 20mm.
A flared region is modeled with 20 steps (IV = 20) of coaxial line with different outer conductor
radii. For computations, it is necessary to truncate the number of modes in the simultaneous
equations. Three higher order modes (n = 3) in each step are included in computation to
achieve numerical accuracy. The behavior of reflection coefficients for air half space and teflon
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Figure 3: Reflection coefficient versus frequency for different permittivity materials. The com-

putation uses a=0.815mm, b=2.655mm, R,=30mm, and H=20mm.

slab is plotted in Fig. 3. In order to check the validity of our method, we compare our results
with the data obtained from the MW STUDIO, FIM (finite integration method) simulator. The
favorable agreement is observed. The curves illustrate that the difference in magnitude of the
reflection coefficient between air half space and teflon slab (infinite) is large near 3 GHz. A
larger sensitivity d-yy/0e, is obtained, which indicates that the flared coaxial line is less sensitive
to an error in estimating e from the measured 7.

5 Conclusion

A problem of a flared coaxial line radiating into a dielectric slab with a flange is solved using
the Hankel transform and mode matching technique. Numerical computations are performed
to illustrate the reflection behavior. A sensitivity of the reflection coefficient to a change in
permittivity increases when the flared coaxial line is used. A flared coaxial line is useful to
accurately estimate the permittivity of a dielectric slab medium.
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