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Abstract
An integration scheme for evaluating the MoM matrix elements in conjunction with

closed-form Green’s functions is considered for analyzing general microstrip structures.

The use of these functions in an MoM with the MPIE formulation enables all the
integrands appearing in the integral calculation procedure of all the matrix elements
to be cast into the function type of a 2-D(two-dimensional) generalized exponential
function and Hankel function. The 2-D integrations for these integrals are efficiently
reduced to the 1-D integrations by use of an integration scheme for a polar

coordinate.

I. Introduction

Recently, in order to accelerate the calculation of spatial domain Green’s functions
for multi-layered planar structures, various closed-form Green’s function methods have
been proposed [1-3] for application to the method of moments(MoM). As already well
known 1in this area, the expressions of closed-form Green’s functions generally have
three terms that correspond to the source dipole itself of type & #/r, surface wave
pole(SWP) contributions expressed as a Hankel function, and complex images
expressed as the sum of complex exponentials.

When closed-form Green’s functions are used in conjunction with rooftop-pulse

L

subsectional basis functions and the razor testing function in an MoM with an MPI
formulation, the integrals appearing in the calculation procedure of the diagonal matrix
elements are of two types. The first 1s 2-D generalized exponential integral for the
contribution of both the source dipole itself and complex images, while the other is
Hankel integral for the contribution of the surface wave pole. Adopting a polar coordinate
for the integrals not only removes the singularities but also drastically reduces the

evaluation time for the numerical integration. In addition, the above numerical efficiency



is also retained for the off-diagonal elements.

II. Theory
Following the previous closed-form Green’s functions method[1-3], vector and scalar

potential Green’s functions for general microstrip structure can be derived as follows :
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where Gy(=e¢ M/r 7=V 0P+ (z—2)% o=V (x—2)2+(y—»)?) represents the contribution

from source dipole itself, G (=C H{®(% 0)) represents the contribution of surface wave

pole( £,), and G (=a,e ""/r, r,=vo'+(z—z —sb,)?" corresponds to the contribution of
the k-th complex image. When closed-form Green’s functions of Eq. (1) are used in
conjunction with the rooftop(pulse) subsectional basis functions for x-directed current
cells (charge cells with dimension «x5), the integrals appearing in the calculation

procedure of the diagonal matrix elements are of following type:
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If 5,=0 in Eq. (2) and (3), the expressions are reduced to singular integral of &,

type. The integrals also in Eq. (4) and (5) have logarithmic singularity of Hankel
function. It is observed that the numerical integration results of these integrals in
the rectangular coordinate system are very slowly convergent (refer to Fig. 1 and 2).
So the integration corresponding to finite number of complex images as well as the

burdensome integrations for the singular integral of type &, and Hankel function

should be performed carefully.
As a solution to resolve these problematic aspects, an integration scheme for a
polar coordinate is employed[4]. If the integrations are expressed using a polar

coordinate, the final expressions for the above integrals take the following form:
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where p.(8) is the radial distance from the origin of the coordinate system to the

contour of the integration region, as defined in [4]. I, ., of Eq. (7) is expression for

the integration range of the falling half rooftop function, and 1, ., can be easily

derived by use of the partial integration in Eq. (5). As a result, it is seen that aside

from elimination singularity, the original two-dimensional integrals (Eqgs. (2), (3), (4),

and (5)) are reduced to the single integrals type of Egs. (6), (7), and (8). It can be
easily found that the above numerical efficiency 1s also retained for the off-diagonal

elements.

III. Numerical Results
In order to examine the convergence of the integrals appearing in the calculation

procedure of 7, , for the case of h=0.8m, &=4.34(epoxy), a=b=6.666mn, Fig. 1 shows

the integration results for /7, , obtained by a Gaussian quadrature using a polar
coordinate versus the magnitude of the complex exponent |j5,| as compared with

those obtained using a rectangular coordinate. As shown in this figure, the
integrations 1n the polar coordinate converged very rapidly with only a few
Gauss-points(i. e., only 3 points for a single variable 4 or v were needed to achieve

an accuracy of better than 0.1%) independent of the magnitude of 5,(even for 5,=0).

Also, Fig. 2 shows the magnitude of the integral I, , versus the number of points for

L

Gaussian integration. Once again, only 3 points in case of polar coordinate were

needed to achieve results accurate to better than 0.1%.

IV. Conclusion
An integration scheme for calculating impedance matrix elements in conjunction
with closed-form Green’s functions was presented for analyzing the general microstrip
structures. Adopting a polar coordinate for the integrals appearing in the calculation
procedure of the all matrix elements not only removes the singularities but also

drastically reduces the evaluation time for the numerical integration. Accordingly, the



present method may help in analyzing general microstrip structures.
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