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Abstract   A new iterative algorithm based on the Gauss-Seidel iteration method is proposed to solve the 
matrix equation in the MoM analysis of the array antennas. In the new algorithm, the impedance matrix of the 
array is treated to consist of the self and mutual sub matrices between the neighboring groups of the array, and 
each sub matrix is regarded as a basic iteration unit rather than the matrix element in the ordinary Gauss-Seidel 
iteration method. It is found that the convergence condition of ordinary Gauss-Seidel iteration scheme is very 
strict for the practical use, while the convergence characteristics of the present algorithm are greatly improved. 
The new algorithm can be applied to the sub domain MoM with a fast convergence if the grouping technique is 
properly used. The computation time for solving the matrix equation is reduced to be proportional to the square 
of the number of the array elements, rather than the third power in the Gauss-Jordan method. The present method 
is effective in MoM analysis of solving lager-scale array antennas. 
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1.Introduction 

A large-scale phased array antenna is important 
and attractive in the rapidly developed mobile 
communication systems to provide broadband 
communication with high quality. It is desired to 
analyze the basic array characteristics numerically, 
such as the active impedance and active element 
pattern, at for designing the array antenna. The 
method of moment (MoM) is one of the efficient 
methods for the analysis of the array antennas. When 
the array antenna has N antenna elements and each 
element is divided into M segments for sub domain 
MoM analysis, TT NN ×  matrix equation has to be 
solved to obtain the unknown current vector, 
where NMNT ×= . 

When the direct method such as the 
Gauss-Jordan method is employed to solve the matrix 
equation, the CPU time is proportional to 3

TN . In the 
case of large-scale array antenna, N becomes so 
large that the CPU time for solving matrix equation is 
much longer than that for evaluating the impedance 
matrix, which is proportional to 2

TN , and becomes the 
dominant part of the total CPU time in the MoM 
analysis. The direct method has another problem that 
the round-off error, which is relatively large, can not 
be ignored for a large system of equations [1]. 

Instead of the direct methods, the iterative 
methods such as the Gauss-Seidel method and the 
Conjugate Gradient (CG) method have been applied 
to solve the linear matrix equations. The number of 
arithmetic operations of these iterative methods is 
usually proportional to 2

TN  for each iteration step 

when TN  is very large. However, it was pointed 
out that the required number of the iteration step of 
the CG method depends on the analysis model and 
the size of segments of the basis functions. It is 
proportional to TN , which means the total number of 
arithmetic operation is proportional to 3

TN , the same 
order to the direct method [3, 4]. Although a fast 
inhomogeneous plane wave algorithm has been 
proposed to reduce the operation cost for the matrix 
multiplication in the CG method to the order of 

TT NN log [5], it is limited to the 2-D scattering 
problems. As for the Gauss-Seidel method, the 
criterion for the convergence of the iteration is that 
the diagonal values of the impedance matrix are large 
enough compared to the off-diagonal values [2]. 
However, the impedance matrix of the MoM analysis 
does not meet the requirements in most of cases, and 
the Gauss-Seidel iterative method does not converge. 
Therefore, it is required to develop a fast and stable 
iterative algorithm whose computation cost is less 
than )( 3NΟ  for solving the matrix equation in 
order to perform the MoM analysis of a large-scale 
array antenna. 

In this paper, a new iterative algorithm based on 
the Gauss-Seidel method is proposed to solve the 
matrix equation ][]][[ VIZ = in the MoM analysis of 
the array antennas, whose CPU time is approximately 

)( 2NΟ . The convergence criterion of the iterative 
algorithm is investigated and the effect of the method 
is shown by some numerical examples.  

  



2. GAUSS-SEIDEL SCHEME  

The important procedure for solving the matrix 
equation ][]][[ VIZ = for unknown ][I by using the 
Gauss-Seidel scheme is to split the matrix ][Z  into 

][][][ TSZ +=  so that the matrix equation becomes 
 

],[]][[]][[ VITIS +−=   (1) 
 
where ][S  has the lower-left triangular part 
including the diagonal elements of ][Z , and ][T  
has the upper-right triangular part excluding the 
diagonal elements. The iterative scheme for solving 
Eq. (1) is given by: 
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where iI , ijS  and ijT  are the elements of the 

vector [I], matrices ][S  and ][T , respectively. The 
superscript l is the step number of the iteration. The 
initial )0(

iI  is usually assumed to be zero. This 

iteration continues until ε≤−+ || )()1( l
i

l
i II  for all i 

at the final Lth step. The convergence criterion for the 
Gauss-Seidel scheme is that all the eigenvalues of the 
matrix ][][ 1 TS −  have their magnitudes less than 
unity [1]. 
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Fig. 1. Analysis model: a linear dipole array 
antenna. 

Piece-wise sinusoidal (PWS) MoM analyses [2] 
is performed to show whether the iteration method 
can be applied or not. The analysis model of the 
linear dipole antenna array is shown Fig. 1. Each 
dipole element is divided into M overlapped dipole 
segments.  

Fig. 2 shows the largest magnitude of the 
eigenvalues of ][][ 1 TS −  obtained from the PWS 
MoM analysis for a half wavelength dipole array 
when M is 1 and 3. Fig. 2(a) shows the case of M=1, 
which means each dipole element is not divided into 
segments. The largest magnitude maxλ of the 
eigenvalues is smaller than unity for two cases, one is 
that d is larger than λ/2, and the other case is that d is 
smaller than λ/2 but N is limited to relatively small 

number, where λ is the wavelength. In both cases, the 
array elements are divided into the dipole segments. 
It is also indicated that the eigenvalues become large 
as the total number of the array elements N increases.  
Fig. 2(b) shows that maxλ  is always larger than 
unity when M is equal to 3.  
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(b) M=3 

Fig. 2. The largest magnitude of eigenvalues 
of matrix ][][ 1 TS −  versus array spacing d 
for PWS MoM.  

The above numerical results show that the 
Gauss-Seidel method can not be applied to solve the 
matrix equation in MoM for the usual array antennas. 
The convergence criterion of the convergence 
depends on the total number of the array elements, 
the number of the segments for each element, the 
array spacing, and the geometry of the antenna. 
Therefore, it is necessary to improve the convergence 
characteristics of the iteration. 

3. NOVEL ITERATIVE ALGORITHM 

In order to overcome the difficulty mentioned 
above, a novel iterative algorithm is proposed. The 
iterative unit is changed to the sub matrices that 
include the self and mutual impedance between the 
neighboring groups of the array, and the sub matrices 
the basic iteration units rather than the matrix element 



in the ordinary Gauss-Seidel iteration method. If each 
group consists of K elements, and the total array 
elements are divided into N/K groups completely as 
shown in Fig. 3, the iterating procedure is expressed 
by:  
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where jI ][  is a MK current vector of the group i, 

and iiZ ][  is a MKMK × matrix, which means the 
self and mutual impedance of the dipole segments 
between two groups i and j. For fast convergence, the 
initial )0(][ iI  is assumed to the current on a single 
group of the array elements ignoring the mutual 
coupling between the groups, which is given by 
 

, N/K.,,  iVZI iiii L21       ,][][][ 1)0( == −   (4)  
 
where iV ][  is the voltage vector of group i.  

The convergence criterion for this algorithm is 
investigated numerically by analyzing the same 
model shown in Fig. 3. First, the convergence 
characteristics are investigated in the case of K=1, 
which means the array is not divided into groups. 
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Fig. 3. Analysis model for the novel iterative 
algorithm: the linear dipole array antenna is 
divided into N/K groups. 

Fig. 4 shows the convergence criterion of the 
array spacing d versus the number of the array 
elements N when the dipole length is λ/2. Although 
Fig. 4 shows the case of M=3, it is found the 
convergence characteristics depend on the number of 
the array elements N and the array spacing d, but are 
almost independent of the segment number M of each 
array element. The figure illustrates that the novel 
iteration algorithm converges when d is larger than 
λ/2, or when d is smaller than λ/2 but N is limited to 
a relatively small number, which is similar to the case 
of M=1 in the Gauss-Seidel method even though the 
array element is divided into several segments in the 
present analysis.  

Although the convergence criterion of present 
method is improved compared with that of the 
original Gauss-Seidel method, the divergence area 

still remains for K=1. Therefore, the convergence 
characteristics is examined for the case of K>1.  
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Fig. 4. Convergence criterion of array 
spacing d for various array element 
number N, when dipole length is λ/2. 

Fig. 5 shows the iteration steps required for Eq. 
(3) when M=9 and N=100. The curve of K=1, which 
means the grouping technique is not applied, is 
shown only in the range of 0.5 to 1 because the 
iteration diverges when d/λ is smaller than 0.5 as 
shown in Fig. 4. However, it is found that if the value 
of K increases to over 10, the iteration converges 
even when d/λ is as small as 0.04. Therefore, the 
grouping technique makes the iteration much more 
stable so that the iterative criterion is improved. 
When K increases, the curve of the required iteration 
steps becomes more and more flat, which means the 
required number of the iteration steps becomes 
independent of the array spacing. 
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Fig. 5. Iteration steps required to perform 
Eq. 5 when every K elements are grouped, 
M=9 and N=100. 

Although a large K can reduce the iteration steps, 
too large K would result in consuming a long CPU 
time. The total computational time T can be 
estimated by the expression  
 

23 )/()( KMNLKMT βα += ,  (5) 
 



where the first term is for evaluating 1][ −
iiZ , the 

second term is for iterating process, and the α, β are 
constants depending on the computer performance.  
Therefore, a large value of K can improve the 
convergence characteristics and decrease the required 
number of the iteration steps, but increase the CPU 
time for evaluating 1][ −

iiZ  which is proportion to the 
third power of K.  

The number of iteration steps versus the total 
number of the dipole array elements is shown in Fig. 
6 for the case of 2l=λ/2 and d=λ/2. When K is large, 
the number of iteration steps becomes independent of 
the element number N. If the number of iteration 
steps is independent of the element number N, the 
computational cost consumed by the present method 
would be approximately proportional to 2N when 
N is as large as the value of second term shown in 
Eq. (5) is much greater than the value of the first term. 
The CPU time versus N is shown in Fig. 7. The value 
of the CPU time shown was measured by using a 
Pentium-III 450MHz PC with a 256 MB memory. 
The curve of the Gauss-Jordan method is also plotted 
for comparison. As expected the CPU time is 
proportional to 3N by using the Gauss-Jordan method, 
while to 2N by using the present method with a 
proper K. The cost saving effect of the numerical 
computation is significant. 
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Fig. 6. Iteration steps versus total number 
of array elements with various K. 
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Fig. 7. CPU time versus total number of 
array elements with various K. 

4. CONCLUSION 

An iterative algorithm has been proposed to 
solve the matrix equation of the MoM analysis for the 
array antenna. The convergence criterion of the 
iterative algorithm has been investigated numerically. 
The CPU time has been shown to be approximately 
proportional to 2N , which is expected to apply the 
MoM analysis to the large-scale array antennas. 

 It should be noted that the Gauss-Seidel 
method, which is applied to the present method, is 
not the most ideal to solve the linear matrix equation. 
Some improving techniques such as the Back and 
Forth Seidel Process [7], the method of Successive 
Overrelaxation (SOR) [8] are superior to the original 
Gauss-Seidel method on the aspects of stability and 
convergence. However these techniques can also be 
directly applied to the present method. This is future 
work of this study. 
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